ويلارد ليبي وثورة التأريخ بالكربون المشع

في عام 1946، اقترح العالم الفيزيائي ويلارد ليبي “Willard Libby” طريقة مبتكرة لتأريخ المواد العضوية عن طريق قياس محتواها من الكربون-14. الكربون-14 هو نظير مشع للكربون تم اكتشافه حديثًا حينها. و توفر هذه الطريقة، المعروفة باسم التأريخ بالكربون المشع، تقديرات موضوعية لعمر الأجسام المعتمدة على الكربون والتي نشأت من كائنات حية. إن “ثورة الكربون المشع” التي أصبحت ممكنة بفضل اكتشاف ليبي أفادت بشكل كبير مجالات علم الآثار والجيولوجيا. إذ سمحت للممارسين بتطوير تسلسلات تاريخية أكثر دقة عبر الجغرافيا والثقافات. فما هي تلك التقنية؟

من هو ويلارد ليبي؟

ولد “ليبي” في جراند فالي، كولورادو، في أمريكا في 17 ديسمبر 1908. درس الكيمياء في جامعة كاليفورنيا، بيركلي، وحصل على درجة البكالوريوس في عام 1931 والدكتوراه في عام 1933. وفي عام 1941، حصل ليبي على زمالة غوغنهايم، لكن خططه تعطلت بسبب دخول الولايات المتحدة في الحرب العالمية الثانية. ذهب ليبي إلى جامعة كولومبيا، حيث عمل على إنتاج اليورانيوم المخصب لبرنامج الأسلحة الذرية في البلاد.

عندما انتهت الحرب، أصبح ليبي أستاذًا في قسم الكيمياء ومعهد الدراسات النووية (معهد إنريكو فيرمي الآن) بجامعة شيكاغو. وهنا طور نظريته وطريقته في التأريخ بالكربون المشع، والتي فاز على إثرها بجائزة نوبل في الكيمياء عام 1960.
غادر ليبي شيكاغو عام 1954 بعد تعيينه مفوضًا لهيئة الطاقة الذرية الأمريكية. وفي عام 1959، عاد للتدريس في جامعة كاليفورنيا، لوس أنجلوس، حيث بقي حتى تقاعده في عام 1976. وتوفي ليبي في عام 1980 عن عمر يناهز 71 عامًا.

ويلارد ليبي

قصة اكتشاف التأريخ بالكربون المشع

إن التأريخ بالكربون المشع تقنية تعتمد على اضمحلال نظير الكربون-14 لتقدير عمر المواد العضوية. حيث تستخدم لتأريخ مواد مثل الخشب والجلود، ويصل عمرها إلى 58,000 – 62,000 سنة. اكتشفها العالم الفيزيائي “ويلارد ليبي” عام 1949. بدأ ليبي، أستاذ الكيمياء في جامعة شيكاغو، البحث الذي قاده إلى التأريخ بالكربون المشع في عام 1945. وقد استوحى أفكاره من الفيزيائي “سيرج كورف” من جامعة نيويورك، الذي اكتشف في عام 1939 أن النيوترونات يتم إنتاجها أثناء قصف الغلاف الجوي بالأشعة الكونية. وتوقع “كورف” أن التفاعل بين هذه النيوترونات والنيتروجين-14، الذي يسود الغلاف الجوي، سينتج الكربون-14، والذي يسمى أيضًا الكربون المشع.

دورة الكربون

أدرك ليبي بذكائه أن الكربون-14 في الغلاف الجوي سوف يجد طريقه إلى المادة الحية، والتي ستكون بالتالي موسومة بالنظائر المشعة. من الناحية النظرية، إذا تمكن المرء من اكتشاف كمية الكربون-14 في جسم ما، فيمكن تحديد عمر ذلك الجسم باستخدام نصف عمر النظير، أو معدل اضمحلاله. [1] في عام 1946، اقترح ليبي هذه الفكرة الرائدة في مجلة Physical Review.[2]

تحليل توازن الكربون

ركز مفهوم التأريخ بالكربون المشع على قياس محتوى الكربون في الأجسام العضوية. ولكن من أجل إثبات الفكرة، كان على ليبي أن يفهم نظام الكربون في الأرض. سيكون التأريخ بالكربون المشع أكثر نجاحًا إذا كان هناك عاملان مهمان صحيحان: أن تركيز الكربون-14 في الغلاف الجوي كان ثابتًا لآلاف السنين. وأن الكربون-14 يتحرك بسهولة عبر الغلاف الجوي والمحيط الحيوي والمحيطات والخزانات الأخرى في الغلاف الجوي في عملية تعرف باسم “دورة الكربون“. وفي غياب أي بيانات تاريخية تتعلق بكثافة الإشعاع الكوني، افترض ليبي ببساطة أنه كان ثابتًا. لقد رأى أن حالة التوازن يجب أن تكون موجودة حيث يكون معدل إنتاج الكربون-14 مساوياً لمعدل اضمحلاله، والذي يعود تاريخه إلى آلاف السنين. (لحسن حظه، ثبت فيما بعد أن هذا صحيح بشكل عام).

وبالنسبة للعامل الثاني، سيكون من الضروري تقدير الكمية الإجمالية للكربون-14ومقارنتها بجميع نظائر الكربون الأخرى. واستنادًا إلى تقدير “كورف” بأنه يتم إنتاج نيوترونين فقط في الثانية لكل سنتيمتر مربع من سطح الأرض، يشكل كل منهما ذرة كربون-14. فخَلُصَ ليبي إلي أن النسبة هي ذرة كربون-14 فقط لكل 1012 ذرة كربون على الأرض.

كانت مهمة ليبي التالية هي دراسة حركة الكربون خلال دورة الكربون. في النظام الذي يتم فيه تبادل الكربون-14 بسهولة طوال الدورة، يجب أن تكون نسبة الكربون-14 إلى نظائر الكربون الأخرى هي نفسها في الكائن الحي كما في الغلاف الجوي. ومع ذلك، فإن معدلات حركة الكربون طوال الدورة لم تكن معروفة آنذاك. قام ليبي وطالب الدراسات العليا “إرنست أندرسون” بحساب اختلاط الكربون عبر هذه الخزانات المختلفة، خاصة في المحيطات، التي تشكل أكبر خزان. تنبأت نتائجهم بتوزيع الكربون-14 عبر خصائص دورة الكربون وشجعت ليبي على الاعتقاد بأن التأريخ بالكربون المشع سيكون ناجحًا. [3]

خصائص الكربون-14 ونظائره

الكربون-14 هو نظير مشع للكربون، حيث تحتوي نواته على 6 بروتونات و 8 نيوترونات. يوجد هذا النظير بشكل طبيعي في المواد العضوية مثل الأشجار والأخشاب القديمة. ويوجد ثلاثة نظائر طبيعية للكربون على سطح الأرض: 99% منها كربون-12، و1% كربون-13، وكمية ضئيلة جدًا من الكربون-14، تقريبًا 1 جزء في التريليون (0.0000000001%) في الغلاف الجوي.

تم اكتشاف الكربون-14 لأول مرة في عام 1940 على يد “مارتن كامين” و”صامويل روبن”، اللذين قاما بإنشائه بشكل مصطنع باستخدام معجل السيكلوترون في مختبر الإشعاع بجامعة كاليفورنيا في بيركلي. أثبتت الأبحاث الإضافية التي أجراها ليبي وآخرون أن نصف عمر الكربون-14 يبلغ 5,568 عامًا، مما يوفر عاملاً أساسيًا آخر في مفهوم ليبي. لكن لم يتمكن أحد وقتها من اكتشاف الكربون-14 في الطبيعة. في هذه المرحلة، كانت تنبؤات كورف وليبي حول الكربون المشع نظرية بالكامل. من أجل إثبات مفهومه عن التأريخ بالكربون المشع، كان ليبي بحاجة إلى تأكيد وجود الكربون-14 الطبيعي، وهو تحدٍ كبير بالنظر إلى الأدوات المتاحة آنذاك.

في ذلك الوقت، لم تكن هناك أي أداة للكشف عن الإشعاع (مثل عداد جيجر) حساسة بما يكفي للكشف عن الكمية الصغيرة من الكربون-14 التي تطلبتها تجارب ليبي. تواصل ليبي مع “أريستيد فون جروس” من شركة Houdry Process Corporation الذي كان قادرًا على تقديم عينة من الميثان تم إثرائها بالكربون-14 والتي يمكن اكتشافها بواسطة الأدوات الموجودة. و باستخدام هذه العينة وعداد جيجر العادي، أثبت ليبي وأندرسون وجود الكربون-14 الموجود بشكل طبيعي، وهو ما يتوافق مع التركيز الذي تنبأ به كورف.

نجحت هذه الطريقة، لكنها كانت بطيئة ومكلفة. ولحسن الحظ، طورت مجموعة ليبي بديلاً. لقد أحاطوا غرفة العينة بنظام عدادات جيجر التي تمت معايرتها للكشف عن الإشعاع الخلفي الموجود في جميع أنحاء البيئة والقضاء عليه. وقد أطلق على التجمع اسم “مكافحة الصدفة” “anti-coincidence counter.”. وعندما تم دمجه مع درع سميك يعمل على تقليل إشعاع الخلفية بشكل أكبر وطريقة جديدة لتقليل العينات إلى كربون نقي للاختبار، أثبت النظام أنه حساس بشكل مناسب. وأخيرا، كان لدى ليبي طريقة لوضع مفهومه موضع التنفيذ.

عداد مكافحة الصدفة لويلارد ليبي

اختبار التأريخ بالكربون المشع

يعتمد مفهوم التأريخ بالكربون المشع على افتراض جاهز مفاده أنه بمجرد موت الكائن الحي، فإنه سينقطع عن دورة الكربون، وبالتالي يتم إنشاء كبسولة زمنية مع تناقص ثابت في عدد الكربون-14 بداخله. سيكون للكائنات الحية من اليوم نفس كمية الكربون-14 الموجودة في الغلاف الجوي، في حين أن المصادر القديمة للغاية التي كانت حية ذات يوم، مثل طبقات الفحم أو النفط، لن يتبقى منها شيء. بالنسبة للأشياء العضوية ذات الأعمار المتوسطة – بين بضعة قرون وعدة آلاف من السنين – يمكن تقدير العمر عن طريق قياس كمية الكربون-14 الموجودة في العينة ومقارنتها بنصف العمر المعروف للكربون-14.

ولاختبار هذه التقنية، طبقت مجموعة ليبي عدادًا مضادًا للمصادفة على عينات كانت أعمارها معروفة بالفعل. من بين الأشياء الأولى التي تم اختبارها كانت عينات من الخشب الأحمر وأشجار التنوب، والتي تم معرفة عمرها من خلال حساب دورات نموها السنوية. كما قاموا بأخذ عينات من القطع الأثرية من المتاحف مثل قطعة من الخشب من القارب الجنائزي للفرعون المصري سنوسرت الثالث، وهي قطعة عُرف عمرها من خلال سجل وفاة صاحبها.

و في عام 1949، نشر ليبي وأرنولد النتائج التي توصلا إليها في مجلة العلوم، مقدمين ما يعرف باسم “منحنى المعارف” “Curve of Knowns”. يقارن هذا الرسم البياني العمر المعروف للقطع الأثرية مع العمر المقدر كما هو محدد بواسطة طريقة التأريخ بالكربون المشع. وأظهرت أن جميع نتائج ليبي تقع ضمن نطاق إحصائي ضيق للأعمار المعروفة، مما يثبت نجاح التأريخ بالكربون المشع.

منحني المعارف لويلارد ليبي

كيفية قياس تركيزات الكربون-14

اليوم، هناك طريقتان أساسيتان لقياس تركيزات الكربون-14 في العينات وهي:

القياس الإشعاعي : حيث تقوم بحساب معدل اضمحلال الذرات الفردية في العينة باستخدام عداد الغاز المتناسب (أحد أشكال عداد جيجر) “gas proportional counter” أو عداد الومضات السائل “liquid scintillation counter”.

أما الطريقة الثانية، فهي القيام بإجراء تحليل نظائري كامل في مطياف الكتلة المسرع “Accelerator Mass Spectrometer(AMS)“.

يعد قياس الإشعاع  رخيصًا نسبيًا (حوالي 300 دولار/عينة)، ويستغرق حوالي شهر للحصول على إحصائيات مرضية، ويتطلب حوالي 100 جرام. وتعد طريقة جيدة لحساب متوسط المواد المكونة من مواد من مختلف الأعمار (رواسب البحيرات وما إلى ذلك). أما التحليل النظائري الكامل مكلفًا نسبيًا (حوالي 600 دولار/عينة أو أكثر اعتمادًا على وقت الإعداد المطلوب. ويرجع ذلك إلي أن أجهزة قياس الطيف الكتلي باهظة الثمن، حيث تبلغ قيمتها ملايين الدولارات، ولا يوجد بها سوى عدد قليل من المرافق)، ويستغرق حوالي أسبوع، ويتطلب حوالي جرام فقط. وتعد طريقة جيدة لتأريخ عينات معينة، إبرة صنوبر على سبيل المثال، عندما تحتوي العينة على مواد دخيلة أصغر سنا.

Accelerator Mass Spectrometer

و يتم استخدام معايير معايرة (calibration standards) مختلفة لقياسات النشاط الإشعاعي. ومن الأنواع الشائعة المستخدمة حاليًا هو حمض الأكساليك II، والذي تم استخلاصه من محصول دبس البنجر الفرنسي عام 1977. حيث تقوم المعامل بتأريخ هذا للتأكد من حصولهم جميعًا على نفس الإجابة. و يتضمن إعداد العينات (وهي عملية تتطلب مهارة وعمالة مكثفة) استخلاص الكربون في صورة ثاني أكسيد الكربون، وتنقيته، ثم تحويله إلى مركب عضوي مثل البنزين أو التولوين الذي يسهل التعامل معه وقد تختلف تلك الطرق من معمل إلي معمل.

تشمل المواد التي تم تأريخها بالكربون المشع منذ بداية هذه الطريقة ما يلي:

• الفحم، الخشب، الأغصان، البذور، الخث، حبوب اللقاح، الراتنجات.

• العظام والأصداف والشعاب المرجانية.

• الشعر، الجلد، بقايا الدم.

•بحيرة الطين والتربة والماء.

• الفخار، واللوحات الجدارية، والأقمشة، والورق، والرق.

ويجب أن تحتوي جميعها على الأقل على بعض الكربون من أصل عضوي. لسوء الحظ, ليس كل شيء سهلاً حتى الآن. فعلي سبيل المثال، لا تحتوي عظمة ساق الماموث الصوفي الموجودة في “جابريولا” على ما يكفي من الكولاجين لتحليل الكربون-14.

عظمة ساق الماموث الصوفي

ثورة الكربون المشع

كان لإدخال التأريخ بالكربون المشع  تأثير هائل على كل من علم الآثار والجيولوجيا. وهو تأثير يشار إليه غالبًا باسم “ثورة الكربون المشع”. فقبل بحث ليبي، كان على الباحثين في هذه المجالات الاعتماد على طرق تأريخ نسبية فقط، مثل مقارنة طبقات الموقع الذي تم العثور فيه على القطع الأثرية، على افتراض أن طبقات الموقع تم وضعها بتسلسل زمني. إن المقارنة النسبية تقوم ببساطة بترتيب الأحداث دون قياس عددي دقيق. على النقيض من ذلك، قدم التأريخ بالكربون المشع أول طريقة للتأريخ الموضوعي، وهي القدرة على ربط تواريخ رقمية تقريبية بالبقايا العضوية.

ساعدت هذه الطريقة في دحض العديد من المعتقدات السابقة، بما في ذلك فكرة أن الحضارة نشأت في أوروبا وانتشرت في جميع أنحاء العالم. كما ساهم عمل ليبي بشكل كبير في الجيولوجيا. وباستخدام عينات خشبية من الأشجار التي كانت مدفونة تحت الجليد الجليدي، أثبت ليبي أن آخر طبقة جليدية في شمال أمريكا الشمالية انحسرت منذ 10 آلاف إلى 12 ألف عام، وليس 25 ألف عام كما قدر الجيولوجيون سابقًا.

عندما قدم ليبي لأول مرة التأريخ بالكربون المشع للجمهور، قدر بكل تواضع أن هذه الطريقة ربما كانت قادرة على قياس أعمار تصل إلى 20 ألف سنة. ومع التقدم اللاحق في تكنولوجيا الكشف عن الكربون-14، يمكن لهذه الطريقة الآن أن تؤرخ بشكل موثوق مواد عمرها يصل إلى 50 ألف سنة.

المصادر

1-Radioactive decay

2-Radiocarbon Dating

3-Willard Libby and Radiocarbon Dating

لم حازت النقاط الكمومية على جائزة نوبل للكيمياء لعام 2023؟

تخيل بلورة نانوية صغيرة جدًا لدرجة أنها تتصرف مثل الذرة. هذا ما حصل بسببه كل من مونجي جي. باوندي، ولويس إي. بروس، وأليكسي إيكيموف على جائزة نوبل في الكيمياء لعام 2023. إذ اكتشف الثلاثي فئة من هذه الأعاجيب الدقيقة، المعروفة الآن باسم “النقاط الكمومية”، وقد حصلوا على الجائزة عن تطويرهم طريقة دقيقة لتركيبها. فما هي النقاط الكمومية؟

نبذة موجزة عن النقاط الكمومية

تسمى النقاط الكمومية أحيانًا بالذرات الاصطناعية، فهي عبارة عن بلورات نانوية دقيقة مصنوعة من السيليكون ومواد شبه موصلة أخرى. يبلغ عرض النقطة الكمومية بضعة نانومترات فقط، وهي صغيرة بما يكفي لإظهار خصائص كمومية تمامًا كما تفعل الذرات الفردية، على الرغم من أن حجمها يصل إلى مائة أو بضعة آلاف من الذرات. ونظرًا لإمكانية احتجاز الإلكترونات عند مستويات معينة من الطاقة داخلها، فإن البلورات النانوية قادرة على أن تبعث أطوال موجية معينة من الضوء. ومن خلال التحكم في حجم الجسيمات، يستطيع الباحثون برمجة اللون الدقيق الذي ستومض به النقاط الكمومية عند تحفيزها.

أوضح هاينر لينكه، عضو لجنة نوبل للكيمياء وأستاذ فيزياء النانو، أن ميكانيكا الكم تتنبأ بأنه إذا أخذت إلكترونًا وضغطته في مساحة صغيرة، فسيتم ضغط الدالة الموجية للإلكترون. وكلما صغرت المساحة، زادت طاقة الإلكترون، مما يعني أنه يمكن أن يعطي المزيد من الطاقة للفوتون.

في جوهر الأمر، يحدد حجم النقطة الكمومية اللون الذي ستتلون هي به. وتلمع الجسيمات الصغيرة باللون الأزرق، بينما تلمع الجسيمات الأكبر باللونين الأصفر والأحمر.[1]

سباق تجاه عالم النانو

لفترة طويلة، اعتقد الناس أنه من المستحيل تصغير الجسيمات لهذه الدرجة، لكن الفائزين هذا العام نجحوا في ذلك. ففي عام 1981 في معهد فافيلوف الحكومي للبصريات في الاتحاد السوفييتي، كان إيكيموف أول شخص ينجح في ذلك من خلال إضافة النحاس والكلور إلى الزجاج. وقد أظهر كلوريد النحاس قدرة على التشكّل في هيئة بلورات نانوية على يدي إيكيموف، وبدا لون الزجاج مرتبط بحجم الجزيئات.

وفي عام 1983، في مختبرات بيل، كشف بروس ثاني أسرار هذه الجسيمات، التي طفت بحريّة في محلول سائل أثناء تجاربه على استخدام الضوء لتحفيز التفاعلات الكيميائية. وقد لاحظ بروس، أن الحجم يغير الخصائص البصرية للجسيمات النانوية. أثارت هذه الخاصية الكثير من الاهتمام! ولم تغب الفائدة الإلكترونية الضوئية المحتملة لمثل هذه الجسيمات عن خبراء التكنولوجيا، الذين حذوا حذو مارك ريد من جامعة ييل في الإشارة إليها باسم “نقاط كمومية”. لكن على مدار العقد التالي، ناضل الباحثون للتحكم بدقة في حجم وجودة هذه الجسيمات.

وفي عام 1993، اخترع باويندي طريقة كيميائية بارعة لصنع جسيمات نانوية مثالية. لقد كان قادرًا على التحكم في اللحظة الزمنية المحددة التي تتشكل فيها البلورات. ثم تمكن من التحكم في إيقاف واستئناف نمو حجم تلك البلورات. وقد أكسبت اكتشافاته النقاط الكمومية فوائد كبيرة على نطاق واسع في مجموعة متنوعة من التطبيقات.

نموذج الصندوق ذو البئر الجهدي اللانهائي

على مدى العقود الماضية، عندما أصبحت أجهزة أشباه الموصلات أصغر حجمًا، استاء الفيزيائيون بشكل متزايد من ميكانيكا الكم. وعلى وجه الخصوص، يبدو أن بعض الأفكار البسيطة حول الذرات والجزيئات تفسر الخصائص التي تبدو غريبة لأجهزة أشباه الموصلات المصنعة صناعيًا. أحد هذه الأجهزة هو هيكل “النقطة الكمومية”. هذا الهيكل هو في الأساس صندوق صغير يحتوي على عدد صغير قابل للزيادة والنقصان من الإلكترونات. بسبب صغر حجمه وطاقته المنخفضة، يمكن لصندوق الإلكترونات هذا أن يحمل خصائص ذرية. على سبيل المثال، تغيير عدد الإلكترونات في النقطة الكمومية بواحد يكلف طاقة محدودة وقابلة للقياس، وهي مماثلة لطاقة التأين للذرة.

ولشرح ما المقصود بالسابق علينا شرح مايسمي ب الجسيم داخل صندوق ذو بئر جهدي لا نهائي” أو “Confined motion: particle in a box”. هو مفهوم يستخدم في ميكانيكا الكم لوصف حركة جسيم داخل مجال محصور ضيق ومحاط بحائط غير قابل للنفاذ. ويستخدم هذا النموذج لشرح الفارق بين ميكانيكا الكم والميكانيكا الكلاسيكية. حيث تتناسب الأولى مع الأنظمة الكمومية متناهية الصغر، مثل الذرات والجسيمات الأساسية. في حين تنطبق الثانية على الأشياء الكبيرة.

في النظم التقليدية، يمكن للجسيم الحركة بأي سرعة داخل الصندوق، واحتمال وجوده في أي مكان داخله متساوٍ. ولكن عندما يكون الصندوق متناهي الصغر بأبعاد نانومترية، تصبح التأثيرات الكمومية مهمة، وتحدد تصرفات الجسيم. ويبدأ الجسيم في اتخاذ مستويات طاقة معينة داخل الصندوق.

تكوين النظام وشروطه

في هذا السياق، نتحدث عن جسيم مثل الإلكترون. هذا الجسيم يمكن أن يكون محاصرًا داخل منطقة معينة ومحددة تسمى “صندوق”. هذا الصندوق يكون ذا أبعاد محددة، مثل مربع أو مستطيل. و يتألف النظام من نموذج بئر أحادي الأبعاد ويحتوي على جسيم يتحرك بحرية. على سبيل المثال، يمكن أن نتخيل الإلكترون محبوسًا بين جدران ذات جهدين عاليين و يمكن التنقل بينهما.

في الرسم التوضيحي، يُمثل الجدران بوضوح بوجود حائطين، أحدهما عند الموقع x=0 والآخر عند الموقع x=L، والحائطان متوازيان. يفترض هذا النموذج أنه لا توجد قوى داخل الصندوق تؤثر على الجسيم، مثل قوة الجاذبية أو المجال الكهرومغناطيسي، وأن عرض الصندوق هو L. و بما أن الجهد خارج الصندوق كبير لا نهائي، فإن الجسيم لا يمكنه مغادرة الصندوق. وبناءً على ذلك، سيتحرك الجسيم داخل الصندوق بسرعة ثابتة v وقد يصطدم بالجدران وينعكس دون فقدان أي جزء من طاقته.

لغز الإلكترون

الآن، لنتخيل أننا نراقب الإلكترون داخل الصندوق ونقوم بقياس طاقته، هنا سنكتشف شيئًا مدهشًا! الإلكترون لا يمكنه أن يأخذ أي قيمة حُرة للطاقة. بالأحرى، يمكنه فقط أخذ بعض القيم المعينة والمحددة للطاقة. هذا يعني أنه عندما نقوم بقياس طاقة الإلكترون في الصندوق، سنجد أن الإلكترون يمكنه أن يمتلك قيم معينة فقط، مثل 1 و 2 و 3 وهكذا. ولا يمكن للإلكترون في هذه الحالة أن يأخذ أي قيمة طاقة بين هذه القيم، مثل 1.5 أو 1.9. أي أن القيم محددة Quantized وليست متصلة، و هذا ما يسمى بـ “تقانات الطاقة المتجانسة” في ظاهرة الجسيم في صندوق.

بناءً على ذلك، يتخذ الجسيم مواضع محددة داخل الصندوق. حيث يكون عرض الصندوق L مساويًا لمضاعفات نصف طول الموجة، مما يؤدي إلى انعكاس الموجة على الجدران بحيث تتشكل موجة ثابتة. أما إذا كانت L ليست مضاعفة لنصف طول الموجة، فعند انعكاس الموجة، ستتداخل الموجات بشكل هدّام وتتلاشى. هذه نتيجة من نتائج ميكانيكا الكم، حيث يتخذ الجسيم داخل الصندوق مستويات طاقة معينة تعتمد على عدد رئيسي n.

بسبب وجود الجسيم داخل صندوق ذو جهد محدد، يكون لزامًا عليه اتخاذ حالات معينة مرتبطة بعدد صحيح n. وعلى ذلك، يكون للجسيم القدرة فقط على اعتماد مجموعة محددة من الطاقات تعتمد على القيم المحددة لـ n. فإذا أثير الجسيم – مثلما يحدث للإلكترون عند إثارته في الذرة عن طريق امتصاصه لطاقة من الخارج – فإن الإلكترون يقفز من مستوي طاقة الموجود فيه إلى مستوى طاقة أعلى، فيما يسمى قفزة كمومية. وعندما يقفز الإلكترون من مستوى طاقة عالي إلى مستوى طاقة منخفض فإنه يطلق الطاقة الزائدة في شكل فوتون له طاقة موجية محددة (لون محدد). وهذا يظهر لنا كيف تتصرف الجسيمات على مستوى النانومتر في عالم الكمومية، حيث يكون لها قيم معينة ومحددة للطاقة. وتلك الدوال الموجية والطاقات المحددة تلعب دورًا مهمًا في فهم النقاط الكمومية أو Quantum dots.

ما هي النقاط الكمومية أو Quantum Dots؟

إنها جسيمات نانوية من صنع الإنسان صغيرة جدًا بحيث تخضع خصائصها لميكانيكا الكم السابق ذكرها. فمن الممكن اعتبار النقط الكمية بأنها مثل تلك الصناديق ذو البئر الجهدي السابق وصفها. وبناءًا على حجم الصندوق، لا ينبعث منها سوى أطوال موجية محددة تبعًا لإثارتها. وتشمل هذه الخصائص انبعاث الضوء، حيث يعتمد الطول الموجي للضوء المنبعث فقط على حجم الجسيمات. وتمتلك الإلكترونات الموجودة في الجسيمات الأكبر طاقة أقل فتبعث ضوءًا أحمر، في حين أن الإلكترونات الموجودة في الجسيمات الأصغر لديها طاقة أكبر، فتصدر ضوءًا أزرق.

لويس بروس وسحر الألوان الكمية

اكتشف لويس بروس هذا التباين اللوني أثناء عمله في مختبرات بيل في الولايات المتحدة. حيث استهدف بروس إجراء تفاعلات كيميائية باستخدام الطاقة الشمسية. ولتحقيق ذلك، لجأ بروس لجزيئات كبريتيد الكادميوم، التي يمكنها التقاط الضوء، ومن ثم استخدم طاقته لتحفيز التفاعلات.

وضع بروس الجسيمات في محلول ليجعلها صغيرة جدًا، فتعطيه مساحة أكبر لإحداث التفاعلات الكيميائية فيها. وأثناء عمله على هذه الجسيمات الصغيرة، لاحظ بروس شيئًا غريبًا! لقد تغيرت الخصائص البصرية للجسيمات بعد أن تركها على طاولة المختبر لفترة من الوقت! خمن بروس أن نمو الجسيمات قد يكون السبب، ولتأكيد شكوكه، أنتج جسيمات كبريتيد الكادميوم التي يبلغ قطرها حوالي 4.5 نانومتر فقط. بعد ذلك، قارن بروس الخصائص البصرية لهذه الجسيمات المصنوعة حديثًا مع تلك الخاصة بالجسيمات الأكبر حجمًا، والتي يبلغ قطرها حوالي 12.5 نانومتر. امتصت الجسيمات الأكبر الضوء بنفس الأطوال الموجية التي يمتصها كبريتيد الكادميوم عمومًا. لكن الجسيمات الأصغر كان لها امتصاص تحول نحو اللون الأزرق.

أدرك بروس حينها أنه لاحظ تأثيرًا كمّيًا يعتمد على الحجم، فنشر اكتشافه في عام 1983. ثم بدأ في فحص الجزيئات المصنوعة من مجموعة من المواد الأخرى، وكان النمط هو نفسه. فكلما كانت الجسيمات أصغر، كلما كان الضوء الذي تمتصه أكثر زرقة.

يمكن للباحثين أن يحددوا بدقة لون الضوء الذي سينبعث من النقاط الكمومية ببساطة عن طريق تنظيم حجمها. وهذا يوفر ميزة كبيرة مقارنة باستخدام الأنواع الأخرى من جزيئات الفلوروسنت، والتي تتطلب نوعًا جديدًا من الجزيئات لكل لون مميز. ولا تقتصر هذه الميزة في إمكانية التحكم على لون النقاط الكمومية فحسب. فبجانب إمكانية ضبط حجم الجسيمات النانوية، يمكن للباحثين أيضًا ضبط تأثيراتها الكهربائية والضوئية والمغناطيسية. كل ذلك بالإضافة إلى خصائصها الفيزيائية مثل نقطة انصهارها أو كيفية تأثيرها على التفاعلات الكيميائية. [3]

كيف جعل عمل باوندي النقاط الكمومية عملية؟

في عام 1993، طوّر باوندي وفريقه في معهد ماساتشوستس للتكنولوجيا طريقة لإنتاج النقاط الكمومية بشكل أكثر دقة وبجودة أعلى مما كان ممكنا. لقد وجدوا طريقة لتنمية البلورات النانوية في لحظة عن طريق حقن سلائفها الكيميائية في مذيب شديد الحرارة. كما تمكن الباحثون من إيقاف نمو البلورات بشكل فوري عن طريق خفض درجة حرارة المذيب، مما أدى إلى تكوين “بذور” بلورية متناهية الصغر. ومن خلال إعادة تسخين المحلول ببطء، تمكنوا من تنظيم عملية نمو البلورات النانوية. أنتجت طريقتهم بلورات بالحجم المطلوب، وكانت قابلة للتكيف مع أنظمة مختلفة.

فيم تستخدم النقاط الكمومية؟

بعد مرور ثلاثين عامًا، أصبحت النقاط الكمومية الآن جزءًا مهمًا من مجموعة أدوات تكنولوجيا النانو، وهي موجودة اليوم في عدد من المنتجات التجارية.

يتم استخدام الخصائص المضيئة للنقاط الكمومية في شاشات الكمبيوتر والتلفزيون بناءً على تقنية QLED، حيث يرمز حرف Q إلى النقطة الكمومية Quantum dots. في هذه الشاشات، يتم توليد الضوء الأزرق باستخدام “الدايودات الموفرة للطاقة” والتي تم منح جائزة نوبل في الفيزياء لعام 2014 عنها بالفعل. وتستخدم النقاط الكمومية لتغيير لون بعض الضوء الأزرق، وتحويله إلى اللون الأحمر أو الأخضر. هذه القدرة على التحكم قادرة على إنتاج الألوان الأساسية الثلاثة للضوء RGB (الأحمر والأخضر والأزرق) المطلوبة في شاشة التلفزيون.

يمكن أيضًا استخدام الضوء الصادر عن النقاط الكمومية في الكيمياء الحيوية والطب. حيث يربط علماء الكيمياء الحيوية النقاط الكمومية بالجزيئات الحيوية لرسم خريطة للخلايا والأعضاء. كما بدأ الأطباء في دراسة إمكانية استخدام النقاط الكمومية لتتبع أنسجة الورم في الجسم.

يستخدم الكيميائيون بدلاً من ذلك الخصائص التحفيزية للنقاط الكمومية لدفع التفاعلات الكيميائية. وبالتالي فإن النقاط الكمومية تحقق فائدة عظيمة للبشرية، وقد بدأنا للتو في استكشاف إمكاناتها. ويعتقد الباحثون أن النقاط الكمومية يمكن أن تساهم في المستقبل في الإلكترونيات المرنة، وأجهزة الاستشعار الصغيرة، والخلايا الشمسية الأقل حجما، وربما الاتصالات الكمومية المشفرة. هناك شيء واحد مؤكد، وهو أنه لا يزال هناك الكثير لنتعلمه عن الظواهر الكمومية المذهلة.

المصادر:

1-Nobel Prize
2-Particle in a box
3-Quanta Magazine

كيمياء النيتروجين و خصائصه الفريدة لصناعة الأسمدة النيتروجينية

تعتبر الأسمدة النيتروجينية من العناصر الغذائية الأساسية التي تلعب دورًا حاسمًا في تحسين نمو النباتات وإنتاج المحاصيل الزراعية. حيث يساعد النيتروجين في تطوير الأوراق والسيقان. و تُستخدم بشكل واسع في الزراعة لتحقيق إنتاجية أفضل وجودة عالية للمحاصيل. و يتم توفير النيتروجين عادة من خلال الأسمدة النيتروجينية. يعد تحديد الكميات المناسبة لاستخدام هذه العناصر الغذائية أمرًا حاسمًا لضمان نمو نباتات صحية وزيادة الإنتاج الزراعي. سنتكلم في هذا الموضوع  حول فوائد وتطبيقات استخدام النيتروجين في عملية التسميد بالإضافة إلي ظواهر و تطبيقات مهمة لهذا العنصر .

الخصائص الكيميائية للنيتروجين

يوجد النيتروجين فى المجموعة ال 15 من الجدول الدوري. ويرمز إلي النيتروجين ب (N) وعدده الذري 7. ويحدد العدد الذري عدد البروتونات داخل النواة. و يوجد عادة علي شكل غاز لارائحة له ولا لون. ويكون في أغلب الأحيان خاملاً ( غير قابل للتفاعل). وعنصر النيتروجين المستقل هو غاز مكون من جزيئات النيتروجين المكونة من ذرتي نيتروجين مترابطتين. ويطلق علي هذا النوع من الجزيئات اسم جزيئات “ثنائية الذرة”. والصيغة الكيميائية للنيتروجين ثنائي الذرة هي (N2) ويمثل غاز النيتروجين (80%) من حجم الغلاف الجوي. ويعد رابع الغازات انتشاراً فى الكون. كما أن النيتروجين عنصر مهم بالنسبة للكائنات الحية. إذ يوجد فى كافة الأنسجة الحية. وتضم المركبات العامة التي تحتوي علي النيتروجين كل من النشادر (NH3) وحمض النيتريك (HNO3) والسيانيد والأحماض الأمينية. إن العنصر الوحيد الذي يتفاعل معه عند درجة حرارة الغرفة هو الليثيوم. الذي يشكل نيتريد الليثيوم (Li3N). كما يتفاعل الماغنيسيوم مباشرة مع النيتروجين, ولكن عند الاحتراق.[1]

اكتشاف النيتروجين

عرف الإنسان مركبات النيتروجين قبل أن يعرف النيتروجين كعنصر بفترة طويلة، وذلك حين استخدم نترات الصوديوم أو البوتاسيوم فى صنع البارود. فقد تم انتاج البارود للمرة الأولى في الصين في القرن التاسع. ثم استخدمت نترات البوتاسيوم كسماد. لقد عرف الخيميائيون ( الكيميائيون الأوائل) فى العصور الوسطي مركبات النيتروجين معرفة جيدة. كما جري تحضير حمض النيتريك صناعياً، والمعروف باسم حمض النيتريك المركز، في الشرق الأوسط  حوالي عام (800 ميلادي). واكتشف الخيميائيون خلال فترة قصيرة بأن حمض النيتريك يمكن مزجه مع حمض الهيدروكلوريك لتكوين مايعرف ب ” الماء الملكي”، وهو عبارة عن حمض يستطيع إذابة الذهب.

اكتشف عنصر النيتروجين كيميائي اسكتلندي يدعي “دانيال رذرفورد” (1749-1819) فى عام (1772). ثم تابع كيميائيون آخرون مسيرته العلمية، حيث أشار الكيميائي الفرنسي  ” أنطون لافوازيه” فى عام (1776) بأ، هذا الغاز كان عبارة عن عنصر.[5]

النيتروجين و التسميد الزراعي

عملية تثبيت النيتروجين من الغلاف الجوي

يشكل النيتروجين بمفرده أكبر كمية من مكونات الهواء. إذ تقدر كتلة النيتروجين فى الغلاف الجويب (4000 تريليون طن). يتوافر النيتروجين فى الغلاف الجوي بنسبة تبلغ أربع أضعاف كمية الأكسجين، لكن كمية الأكسجين على الأرض تزيد عن النيتروجين بحوالي (10000 مرة). فالأكسجين يعد مركباً أساسياً من المركبات التي تتكون منها اليابسة، ولا، النيتروجين لايشكل شبكة بلورية مستقرة( بنية ذات قوام منتظم) فإنه نادراً مايدخل فى تركيب الصخور والمعادن الطبيعية. وهذا هو أحد الأسباب التي تجعل النيتروجين أكثر تركيزاً من الأكسجين فى الغلاف الجوي. أما السبب الآخر، فهو أن النيتروجين مستقر جداً فى الغلاف الجوي، خلافاً للأكسجين، ولا يشارك فى العديد من التفاعلات الكيميائية. ونتيجة لذلك، يتراكم النيرتوجين فى الغلاف الجوي بكميات أكثر من الأكسجين.

إن عملية تثبيت النيتروجين يتم بواسطتها اتحاد النيتروجين الموجود في الغلاف الجوي مع عناصر أخري بطريقة تسهل امتصاصه من قبل النباتات. ويتم تثبيت النيتروجين بصورة رئيسية عن طريق النباتات البقلية، مثل الفول والبرسيم، لكن تثبيته أيضاً يتم بواسطة البرق. لقد طورت بعض أشكال البكتيريا آلية استطاعت بواسطتها إزالة غاز النيتروجين الموجود في الهواء وتحويله إلي بروتين عن طريق تثبيت النيتروجين. وتستفيد العديد من أنواع البكتيريا من العلاقة الوثيقة مع النباتات التي تحتاج إلي النيتروجين. وتساعد هذه النباتات علي إثراء التربة بالنيتروجين الزائد القابل للذوبان. توصف عملية تثبيت النيتروجين بواسطة البكتيريا من خلال تفاعل النيتروجين مع الفورمالدهيد (CH2O) والماء وأيونات الهيدروجين (H+) لتكوين ثاني أكسيد الكربون (CO2) وأيونات النشادر (NH4+) .[2]

عملية هابر وإنتاج السماد

يستخدم النشادر غير المائي كسماد في أنحاء مختلفة من العالم. ويتم إنتاج النشادر بواسطة عملية تسمي ” عملية هابر”. إذ يتم إنتاج مايزيد عن (500 مليون طن) سنوياً من السماد بهذه الطريقة. وتتلخص تلك العملية فى التفاعل الذي يتم بين النيتروجين والهيدروجين لإناتج النشادر. حيث نال الكيميائي الألماني( فريتز هابر) براءة اختراع هذا النظام فى عام (1908). وتستخدم تلك الطريقة فى انتاج النشادر الغير مائي ونترات النشادر واليوريا التي تدخل فى صناعة الأسمدة. ويحدث هذا التفاعل بمساعدة عامل حفاز ” الحديد”  تحت ضغط يعادل (200 مرة) درجة الضغط الجوي، ودرجة حرارة  تتراوح بين (450_ 500 درجة سيليزية). أما ناتج التفاعل فلا يتجاوز ( 10 _ 20%) ويصل التفاعل إلي حالة التوازن، لكنه يظل مستمراً طوال إزالة الناتج وإضافة المتفاعلات.[3]

مركبات نيتروجينية

يمكن اعتبار النشادر أكثر مركبات النيتروجين أهمية. ويستخدم النشادر كغذاء بالنسبة للنباتات، حيث يتحد مع جزيئات الكربون العضوي لتكوين مركبات كيميائية تعرف باسم الأمينات. يمكن أن تتجمع هذه الأمينات لتكون حمض النشادر، الذي يعد من المركبات الحيوية بالنسبة للكائنات الحية. وبالإضافة إلي ذلك، يشكل النيتروجين أكاسيد أخري مختلفة مع الأكسجين. وهناك نوع من هذه الأكاسيد يسمي أكاسيد النيتروز (N2O). وهو عبارة عن مادة مخدرة معروفة باسم ” غاز الضحك” . كما يتشكل أول أكاسيد النيتروجين (NO) وثاني أكسيد النيتروجين (NO2) عندما يحدث احتراق الهيدروكربونات فى الهواء تحت ضغط مرتفع. ويتم إنتاج الأكاسيد النيتروجينية داخل محركات الإحتراق الداخلي. أما في الغلاف الجوي، فتشكل هذه الأكاسيد النيتروجينية ما يعرف بالضباب الدخانى، وهو شكل من أشكال ضباب الغلاف الجوي الناتج عن تفاعل ضوءالشمس مع الملوثات. ويتصف نوعان آخران من المركبات التي تتكون من النيتروجين والأكسجين، هما ثالث أكسيد النيتروجين المزدوج (N2O3) وخامس أكسيد النيتروجين بخاصية عد الاستقرار وقابلية الانفجار.

إن أكاسيد النيتروجين التي تتشكل فى محركات الاحتراق الداخلي لاتسبب حدوث الضباب الدخاني فحسب، بل تتفاعل أيضاً مع بخار الماء فى الغلاف الجوي وتنتج حمض النيترك وحمض النيتروز. وتذوب الأحماض الغازية في ماء المطر وتشكل ترسبات حمضية يطلق عليها الأمطار الحمضية. ويمكن أن تسرع الأمطار الحمضية من أثر العوامل الجوية على الصخور، بما في ذلك الصخور والحجارة المستخدمة فى المباني والمنحوتات.[4]

النيتروجين السائل

بالإضافة إلي دور النيتروجين الحيوي في عملية الزراعة، فلا يمكننا إغفال أحد أهم تطبيقاته وهو النيتروجين السائل. يطلق علي دراسة درجات الحرارة المنخفضة جداً اسم “التبريد الفائق”. يمكن تنفيذ التبريد الفائق بواسطة الغازات السائلة، ومن أهم الغازات المستخدمة لهذا الغرض هو النيتروجين السائل الذي يتم استخدامه فى العديد من التطبيقات المفيدة. ففي المجال الطبي، يستخدم النيتروجين السائل لتجميد مساحات من الجلد من أجل معالجة سرطانات الجلد . كما يستعمل أيضاً فى عمليات تجميد الدم البشري والحيوانات المنوية والأجنة كي يعاد إستخدامها في فترات زمنية لاحقة. ويستخدم في الصناعات الغذائية في عمليات التجميد السريع، وعند زوال تجميد الطعام بهذه الطريقة، لاتتكاثر فيه البكتيريا لأن النيتروجين يحل محل الأكسجين الموجود في الطعام. يمكن كذلك ضخ النيتروجين السائل في آبار النفط من أجل زيادة الضغط في أسفل تلك الآبار، مما يؤدى إلي اندفاع النفط نحو السطح.

المصادر:

1-Nitrogen properties

2-Nitrogen Fixation

3-Haber process

4-Acidic rain

5-Nitrogen Discovery

سحر الكيمياء في عالم مصر القديمة, اكتشافات مازالت تدهشنا

من بين جميع العلوم، الكيمياء هي أكثر العلوم التي يرتبط بها المصريون القدماء ارتباطًا وثيقًا. حتى إن إحدى المدارس الفكرية تنسب كلمة كيمياء إلى الإسم المصري لمصر القديمة”kemet”، الذي نقله الكيميائيون اليونانيون والعرب. و التي تعني “الأرض السوداء”، وتصف لون التربة السوداء الخصبة التي تترسب سنويًا من نهر النيل. و ليس من قبيل المصادفة أن يكون هذا هو الاسم و الاعتراف بأن المصريين كانوا أفضل الكيميائيين في العالم القديم حتى الإغريق اعترفوا بذلك. إن الاستخدام المصري للكيمياء أُعتُقِدَ بأنه “أسطوري علمي”. فلقد اعتقدوا، على سبيل المثال، أن المواد تمتلك جوهرًا أو انبعاثًا لآلهة مختلفة مثل المغنتيت حيث ربطوه بالإله حورس. وكان يُعتقد أن ملح النطرون مع أوزوريس وراتنجات الأشجار هي دموع الآلهة. استخدمت الكيمياء على نطاق واسع، لكن ارتباطها بالطقوس الدينية كان محوريًا، حيث عمل علماء المعادن والعطور والصباغون خارج المعابد، وفقًا لقواعد الطقوس. مما أدى هذا إلى السرية المحيطة بمعرفتهم الكيميائية. فكيف كان المصريون القدماء بتلك البراعة في الكيمياء؟ وهل كانت انجازاتهم مجرد “تجربة وخطأ” أم أكثر تعقيدا مما نعتقد؟

تقنيات في صناعة الألوان والأصباغ

يعتبر تخليق المواد هي  جوهر الكيمياء وهو مايميز الكيميائي الماهر. وكان المصريون القدماء أول حضارة تصنع صبغة غير عضوية، وهي الأزرق المصري. كان هذا جزءًا من رغبتهم في تقليد الأحجار الكريمة التي ارتبطوا بها مع الآلهة، ولا سيما اللازورد، وهو معدن سيليكات الألومنيوم الأزرق النادر المحتوي على اللازوريت، والذي اعتقدوا أنه يشكل شَعْر الإله. من عام 2500 قبل الميلاد، بدأوا في تصنيع الصبغ الأزرق رباعي سيليكات الكالسيوم والنحاس (CaO.CuO.4SiO2). و أعيد تصنيعها في العصر الروماني، قبل أن تضيع التكنولوجيا. ثم أعيد اكتشافها فقط في القرن التاسع عشر.

و بالنظر إلى الكيمياء التي ينطوي عليها الأمر، لا يمكنك إلا أن تقدر مهاراتهم. حيث تم محاولة تحضير القليل من الأزرق المصري, واحتاج الأمر إلي وجود جو مؤكسد, ومحفز ومواد خام _مثل السيليكا والجير والنحاس_ إلي التسخين مع مادة البوراكس “Borax” للحصول علي ذلك اللون. وذلك مع الأخذ فى الاعتبار قياس العناصر المتكافأة للمنتج النهائي, ممايشير إلي أن الكيميائيين المصريين كانوا قادرين علي تعديل ظروف أفرانهم ومعدل التبريد لتكوين صبغات خضراء بديلة عن عمد أيضاً. إن اللون الأزرق المصري، وهو أول صبغة اصطناعية، تم صنعها منذ 3000 عام قبل الميلاد، و تركيبتها الكيميائية هي CaCuSi4O10، أو CaO3CuO34SiO2، وهي عبارة عن سيليكات نحاس الكالسيوم. تم إنتاجها عن طريق تسخين رمال الكوارتز ومركب نحاسي و CaCO3 وكمية صغيرة من القلويات (رماد النبات أو النطرون) معاً إلى 800-1000درجة مئوية لعدة ساعات ، وخلال هذه الفترة يحدث التفاعل التالي:[1]

Cu2CO3(OH)2+8SiO2 +2CaCO3= 2CaCuSi4O10+3CO2 +H2O

واعتمادًا على كيفية طحن هذه الكريستالات الناتجة عن التفاعل، ينتج مجموعة من الألوان الزرقاء. حيث يعطى المسحوق الناعم لون أزرق سماوي فاتح والحبوب الخشنة تعطي ألوانًا زرقاء أغمق.

عُرف عن القدماء المصريين في العالم القديم بأنهم صباغون ممتازون. لقد عرفوا الموردينتس “Mordents” وهي مواد تستخدم لربط الصبغة بالقماش. وقد استخدموا “حجر الشب” أو مايمسي بال “Alum” لذلك الغرض . و غالبًا ما يحتوي حجر الشب_ وهو ملح كبريتات البوتاسيوم الألومنيوم_ على شوائب من الحديد، مما قد يؤدي إلى ظهور لون غير مرغوب فيه في عملية الصباغة. مما يبدو من المحتمل أنه في العصور القديمة تمت تنقية الشب عن طريق عمليات إعادة التبلور”Recrystallization”.

إلى جانب الصبغات المعدنية، استخدم المصريون صبغات نباتية مثل الفوة ، القرطم ، والألكانيت للون الأحمر، ونبات وسمة الصباغين للأزرق. ولحاء شجرة الرمان للأصفر. و يحتوي المستخلص الأحمر من نبات الفوة على الإيزارين، الذي تم اكتشافه على الأقمشة الحمراء الموجودة في مقبرة توت عنخ آمون.

 وجاء اللون النيلي أو الأزرق من نبتة النيلي أو من نبات وسمة الصباغين. حيث يُهرس النبات في الماء ويُترك للخليط ليتخمر، وبعد ذلك يتشكل راسب أزرق من “الإنديجوتين”. ويتم تجفيفه ثم استخدامه علي هذا الشكل. ثم بعد ذلك يتم اختزال الأنديجوتين إلى مركب عديم اللون قابل للذوبان عن طريق المعالجة الكيميائية على سبيل المثال، العسل أو الجير، ثم يُغمر النسيج في المحلول ويُترك ليجف. وعن طريق الأكسدة بالهواء أثناء عملية التجفيف يظهر اللون .

كانت الصبغة الأكثر قيمة في العصور القديمة هي اللون الأرجواني الصوري” Tyrian purple”. هذه الصبغة هي “ديبروموينديجوتين”. حيث حصل القدماء عليها من سلائف “precursors” شبه عديمة اللون من غدد المحار التي يحصدوها من البحر الأبيض المتوسط. وينشأ اللون الأرجواني عندما يجف القماش المعالج في الشمس.

كيمياء البحث عن الحياة الأبدية

كانت مهارات التحنيط لدى المصريين في أوجها خلال فترة حكمه في الأسرة الثامنة عشر. حيث تم العثور علي مجموعة واسعة من المواد العضوية _من أصل حيواني ونباتي_ المرتبطة بالتحنيط علي جثث الممياوات. على الرغم من أن التحنيط المبكر كان يُنظر إليه في البداية على أنه مجرد جفاف ناجم عن الصحراء المصرية الحارة والجافة. و اعتمدت هذه العملية، المستخدمة للحفاظ على الجسم للآخرة، على تجفيف الأنسجة لمقاومة التعفن. و تطورت من بداية بسيطة إلى عملية معقدة. حيث يقول هيرودوت، أن الجسم بعد إزالة المخ وبعض الأعضاء الداخلية، تتم تغطيته بالنطرون لمدة 70 يومًا لتجفيف الأنسجة. وتم استخدام النطرون كعامل تجفيف وخَلُص إلي أنه تم استخدامه في الحالة الجافة وليس كسوائل. وأن الفترة المثلي للجفاف هي 30-40 يومًا. تم استخدام الراتينج المصهور أيضًا كعامل تحنيط. و مكنت التحسينات الفنية خلال الأسرة التاسعة عشرة من الاحتفاظ بلون الجلد الطبيعي كما يظهر في مومياء رمسيس الثاني.

وقد اكتشف العالم “باكلي” أدلة أكثر تعقيدا على التحنيط. ففي وقت مبكر من أواخر العصر الحجري الحديث قبل العصر الفرعوني، منذ أكثر من 6000 عام، وجد أنهم يستخدمون بالفعل المنتجات الطبيعية، وراتنجات الأشجار، والمنتجات النباتية التي لها خصائص مضادة للبكتيريا والفطريات ومبيدات الحشرات إلى حد ما. مما يؤدي إلي حماية ممتازة لكامل الجسم في هذا الوقت.[2]

إن ظن الأغلبية في تحنيط توت عنخ آمون أنه من المحتمل أن قد تم تحنيطه في محلول النطرون بالطريقة السابق ذكرها. و لكن تم ذكر فكرة مضادة لهذا في عام 1914 من قبل الكيميائي ألفريد لوكاس، الذي عمل مع كارتر_مكتشف مقبرة توت عنخ آمون_ والذي كان معروفًا باسم شيرلوك هولمز في علم المصريات. حيث أوضح تحليله للمومياء بقعًا من كلوريد الصوديوم والكبريتات على الجلد، ولكن بدون أي أثر للكربونات. لقد حيره هذا الأمر وخَلُصَ في النهاية إلى أن النطرون لم يستخدم على الإطلاق. ولكن باكلي اعتقد أن هذا سيكون سمة من سمات حل تلك الأحجية. وهو أن ليس لديك الكربونات والبيكربونات لأنهما قد تم دمجهما مع الأنسجة.

إن ارتفاع درجة القلوية “High PH” فى المحاليل، من شأنه أن يوقف البكتيريا عن مسارها، عن طريق منع وظيفة الإنزيم. مما يساعد المحلول أن ينتشر بشكل أعمق في الأنسجة ويغير بنية الكولاجين، ربما عن طريق الارتباط الكاتيوني ببقايا البروتين الكربوكسيلي، مما يوفر مزيدًا من الحفظ الكامل. ومن ثم سيظل الجسم يحتوي على كمية كبيرة من الأنسجة والماء بداخله.

و من تجارب التحنيط التي أجراها باكلي، بما في ذلك على جسم الإنسان المتبرع به، خَلُصَ إلى أنه عندما يتم إجراء العملية بعناية شديدة، فإن النتيجة ستكون حفظًا مثاليًا تقريبًا. فعندما يدخلون القبر ، يبدون تمامًا كما كانوا على قيد الحياة، وكأنهم نائمون.  إن تلك العملية أظهرت مستوى عالٍ من التعقيد والتحكم وهو استخدام الراتنجات العضوية من مجموعة متنوعة من المصادر. بالإضافة إلى استخدام هذه الخلائط كوسيلة لعزل الماء. حيث تشير الدلائل إلى أنه تم تطبيقها أيضًا على الأجسام قبل استخدام النطرون. وذلك بسبب الطبيعة الكاوية للكربونات والبيكربونات، فإذا لم تقم بتطبيق هذه الطبقة العضوية، فإنها سوف تبيض الجلد باللون الأبيض. ولكن إذا وضعت مادة الحاجز العضوي هذه أولاً ثم وضعتها في محلول النطرون، فإن ما تحصل عليه بعد ذلك هو حفظ ممتاز للون البشرة.

سر خلطات مستحضرات التجميل

من أهم ألغاز الكيمياء المصرية القديمة، اكتشاف أصباغ الرصاص الاصطناعية المستخدمة في مكياج الكحل الذي كان يرتديه المصريون القدماء. ويعود تاريخه إلى عام 2000 قبل الميلاد. وقد نُشر في عام 1999، التحليلات الكيميائية التي أجراها “فيليب والتر” في متحف اللوفر في باريس. حيث أظهرت أن المركبات المحفوظة جيدًا الموجودة في مجموعة اللوفر لأواني المكياج المصرية القديمة، تضمنت أصباغًا طبيعية (galena (PbS و cerussite (PbCO3). ولكن أيضًا اللوريونيت (Pb(OH)Cl) ومسحوق الفوسجينيت الأبيض (Pb2Cl2CO3)، و نادرًا ما يتم العثور على كلاهما بشكل طبيعي ومن غير المحتمل أن يكونا نتاج تحلل لأي شيء موجود. ومن ثم استنتج والتر أن هذه الأصباغ يجب أن تكون صنعت صناعياً، باستخدام ما نسميه اليوم الكيمياء الرطبة “Wet chemistry”.

و استنادًا إلى الوصفات الرومانية اللاحقة، جرب والتر طريقة لإنتاج الفوسجينيت. لقد استخدم معدن “الليثارج” _(PbO)_ المطحون بالملح وخلطها في الماء وفي بعض الحالات كربونات الصوديوم. ثم قام بتحييد المحلول القلوي الناتج (تصف الوصفة الرومانية صب المحلول واستبدال الماء كل يوم للتحكم في الرقم الهيدروجيني) وبعد عدة أسابيع وجد إما مادة اللوريونيت أو الفوسجينيت، مع بلورات ذات حجم مماثل لتلك الموجودة في العينات المصرية. و يشير هذا إلى أنه ربما كان لديهم بعض المعرفة بالتحكم في الأس الهيدروجيني والمحاليل المُثَبتَة “Buffering solutions” وبعض الكيمياء الكمية الأساسية.

تم تأكيد عمل والتر منذ ذلك الحين من قبل عدة مجموعات بحثية. ففي عام 2018 ، استخدمت “لوسيل بيك” ، من مختبر قياس الكربون 14 بجامعة باريس ساكلاي، التأريخ بالكربون المشع لإثبات أن عينات المكياج المصرية القديمة تضمنت مركبات اصطناعية. و من العينات التي تم اختبارها، تم تأكيد إحداها على أنها مستحضرات تجميل اصطناعية، مصنوعة من نفس مركب الفوسجينيت الذي اكتشفه والتر ومٌؤَرخ في الفترة من 1763 إلى 1216 قبل الميلاد.

كانت لوسيل بيك قادرةً أيضًا على تحديد تاريخ الوعاء الخشبي بالكربون (إلى 1514-1412 قبل الميلاد ، في عهد أمنحتب الثالث) الذي كان يحتوي على المكياج. و لقد حصلوا على علاقة ارتباط جيدة جدًا بين نتائج الصندوق الخشبي ونتائج عينات المكياج. لذلك في هذه الحالة، فإنه دليل مباشر على أن مستحضرات التجميل هذه تم إنتاجها بشكل مصطنع في ذلك الوقت. و قد يكون هذا أقدم دليل على استخدام الكيمياء الرطبة لإنتاج مستحضرات التجميل، على الرغم من أن واحدة فقط من العينات كانت اصطناعية، إلا أنها تبدو نادرة. اختبر بيك أيضًا بعض العينات من المتحف البريطاني ولم يعثر حتى الآن على أي مستحضرات تجميل اصطناعية.

جاء المزيد من الأدلة على وجود الفوسجينيت الاصطناعي من فريق من معمل أبحاث الآثار في جامعة أكسفورد في المملكة المتحدة، وتم أخذ عينات من 11 حاوية كحل في متحف بيتري بجامعة لندن. لقد أجروا مجموعة واسعة من التحليلات الكيميائية لإلتقاط كل من المكونات غير العضوية والعضوية. ووجدوا أيضًا مركبات الرصاص التي من المحتمل أن تكون قد تم تصنيعها. ووجدوا تنوعًا أكبر بكثير من التحليل الحديث السابق، بما في ذلك أشياء مثل المعادن التي تحتوي على المنغنيز والنحاس. بالإضافة أيضًا إلي مكونات لا تحدث معًا بشكل طبيعي، لذلك كانت هناك نية متعمدة في صياغاتهم. في عام 2010، اقترح فريق فرنسي بما في ذلك والتر، أن تركيبات الكحل التي صنعها المصريون القدماء ربما تكون قد صيغت لخصائصهم الطبية. حيث أظهروا أن أيونات Pb2+ يمكنها أن تثير استجابة معينة من الإجهاد التأكسدي في خلايا الجلد التي يمكن أن تحفز الاستجابة المناعية.

فن تشكيل المعادن من ذهب توت عنخ آمون إلي تقنيات التلحيم

أظهر المصريون القدماء أيضًا مهارة فنية هائلة في صناعة المعادن. وعلي الرغم من عدم تمكنهم أبدًا من صهر الحديد- الحديد الوحيد الذي كان لديهم كان نيزكيًا ويسمى بشكل مناسب “معدن السماء”- لكنهم كانوا أساتذة في صناعة النحاس والفضة والذهب. أنتجوا أشياء مثل القناع الذهبي لتوت عنخ آمون، المصنوع من سبائك الذهب عيار 23 قيراطًا، مع عيون كوارتز وسبج ولازورد مرصع. إحدى التقنيات التي تثير إعجاب هي طريقة اللحام، والمعروفة باسم اللحام الصلب الكيميائي، والتي تظهر في تصنيع المجوهرات الذهبية. حيث يتم استخدام ملح النحاس المسحوق مثل الملكيت (كربونات النحاس) ، و يتم لصقها في مكانها. و عند تسخين الملحين معًا (الذهب والنحاس)، ينتج عن ذلك انخفاض في درجة انصهار الذهب في الحال. وهذا ما كان يجعل سبائك النحاس والذهب مميزة لتشكيل اللحام. مرة أخري، انها كيمياء!.

ان مجال الحديث عن الكيمياء في مصر القديمة واسع وما تم ذكره ماهي الا مقتطفات من فيض علمهم الذي مازال يحير العلماء. و لا يُعرف سوى القليل نسبيًا عن معاملهم ومعداتهم. حيث يوجد في عدد من المعابد المصرية غرف تسمى المعامل. وهي غرفة محفورة فيها وصفات العطور وهناك أيضًا وصفات تستحضر عمليات الصباغة، ولا سيما في معبد دندرة. و في العصر الفرعوني، من شبه المؤكد أنه لم يكن هناك أي من الأواني الزجاجية التي قد نربطها بالمختبر. حيث لم يصل نفخ الزجاج إلى مصر حتى الإمبراطورية الرومانية.

كما أن الافتقار إلى النصوص الكيميائية جعلنا نفتقر إلى المعلومات حول كيفية نظر المصريين إلى العالم المادي وما إذا كان لديهم أي إطار نظري لوصف طبيعة المادة. و غالبًا ما يُنسب هذا النوع من التفكير إلى الإغريق، مثل ديموقريطوس الذي توصل إلى فكرة الذرة حوالي عام 400 قبل الميلاد. حيث أرجع بعض العلماء إلي أن هذا التركيز على التفكير الفلسفي قد يكون بسبب نقص الإغريق النسبي في الموارد الطبيعية والمواد التي منعتهم من تطوير المهارات العملية والتجريبية للمصريين. و من المحتمل أن الكثير من العلوم التي تعتبر الآن نتاجًا للثقافة اليونانية قد تم نقلها من مصر. مثل جميع أنواع الوصفات، وكيفية صنع اللؤلؤ الصناعي أو الأحجار الكريمة الاصطناعية، فهذه وصفات أقدم بكثير ترجع إلى التقاليد المصرية.

المصادر

1-Chemistry in the Time of the Pharaohs

2-Unwrapping ancient Egyptian chemistry

كيف تعمل الألعاب النارية وما هي استخداماتها؟

الألعاب النارية هي عرض يأسر الجماهير في جميع أنحاء العالم. إنهم يعملون من خلال مزيج من الكيمياء والفيزياء والفن. تستخدم المفرقعات في مجموعة متنوعة من الأحداث، بما في ذلك الألعاب الرياضية والحفلات الموسيقية والاحتفالات. كما أنها تستخدم في الجيش للتواصل وإنشاء ضوضاء.

ما هو تاريخ الألعاب النارية؟

يعود تاريخ المفرقعات النارية إلى آلاف السنين، مع أصولها في الصين القديمة. فيما يلي نظرة عامة موجزة عن تاريخ الألعاب النارية [1] :

الصين القديمة: يعود أقدم استخدام إلى عهد أسرة تانغ في الصين (618-907 م). استخدم الصينيون الألعاب النارية للاحتفالات الدينية والأغراض العسكرية.

انتشر إلى بلدان أخرى: من ثم انتشر استخدامها إلى بلدان أخرى، بما في ذلك اليابان والهند والشرق الأوسط، من خلال الفتوحات التجارية والعسكرية.

أوروبا: تم إدخال الألعاب النارية إلى أوروبا في القرن الرابع عشر، على الأرجح من خلال التجارة مع الشرق الأوسط. أصبحوا مشهورين في الاحتفالات، مثل حفلات الزفاف والتتويج.

إيطاليا: اشتهرت إيطاليا بفنيي المفرقعات النارية المهرة في القرن السادس عشر. لقد طوروا تقنيات وتصميمات جديدة لعروض جذابة انتشرت في جميع أنحاء أوروبا.

الألعاب النارية الحديثة: في القرن التاسع عشر، تم تطوير مواد كيميائية ومواد جديدة، مما سمح بألوان أكثر حيوية وتأثيرات تدوم طويلاً. أصبحت المفرقعات النارية شكلاً شائعًا من وسائل الترفيه للاحتفالات العامة، مثل يوم الاستقلال في الولايات المتحدة.

تُستخدم المفرقعات النارية اليوم في مجموعة متنوعة من الاحتفالات حول العالم، بما في ذلك ليلة رأس السنة الجديدة، والأعياد الوطنية، والمهرجانات الثقافية. لا يزالون رمزًا للفرح والاحتفال، ويعكس تاريخهم التبادل الثقافي والابتكار الذي شكل عالمنا.

ما هو التكوين الداخلي للألعاب النارية؟

المفرقعات تستخدم لتوليد صوت عالي وألوان جذابة لجذب الانتباه. وهي مصنوعة من مسحوق بارود يوضع في أنبوب معدني أو بلاستيكي. عندما يتم إشعال البارود، فإنه ينتج انفجارًا يدفع الأنبوب إلى الأمام ويخلق صوتًا عاليًا. فيما يلي تفصيل لمكونات كيفية عمل الألعاب النارية [2,3] :

بناء قشرة: تتكون المفرقعات النارية عادة من غلاف مصنوع من الورق أو الكرتون، والذي يحتوي على عدة مكونات.

المصهر: فتيل متصل بالقشرة، يشتعل لبدء تسلسل التفاعلات.

شحنة الرفع: شحنة الرفع هي المكون الأول المتفجر. عندما تشتعل، تدفع المفرقعات في الهواء.

شحن الاندفاع: بمجرد وصول المفرقعات إلى الارتفاع المطلوب، تشتعل شحنة الانفجار. إنها مسؤولة عن إحداث الانفجار والتأثيرات المرئية اللاحقة.

النجوم: النجوم عبارة عن كريات صغيرة مصنوعة من مواد كيميائية مختلفة. تحتوي على مزيج من المؤكسدات والوقود والأملاح المعدنية. تحدد هذه المواد الكيميائية اللون والتأثيرات المرئية.

صمام تأخير الوقت: تم تصميمالمفرقعات مع صمامات تأخير الوقت للتحكم في تسلسل الانفجارات. هذا يسمح بعرض مصمم لتأثيرات مختلفة.

الاشتعال: عندما تشتعل شحنة الانفجار، فإنها تطلق كمية كبيرة من الغاز والحرارة، مما يؤدي إلى انفجار القشرة. في نفس الوقت، يشعل النجوم الموجودة داخل الغلاف.

الاحتراق: يؤدي اشتعال النجوم إلى تفاعل كيميائي يُعرف بالاحتراق. توفر المؤكسدات في النجوم الأكسجين لحرق الوقود، بينما تنتج الأملاح المعدنية ألوانًا نابضة بالحياة عند تسخينها.

التأثيرات المرئية: يؤدي الجمع بين المواد الكيميائية والأملاح المعدنية المختلفة في النجوم إلى مجموعة متنوعة من التأثيرات المرئية، مثل التألق أو الطقطقة أو التوهج. الألوان المنتجة تعتمد على الأملاح المعدنية المستخدمة.

المؤثرات الصوتية: تتضمن بعض المفرقعات أيضًا مكونات مثل مزيج الصافرة أو مسحوق الفلاش، والتي تنتج مؤثرات صوتية مثل الصفارات أو الدوي.

تدابير السلامة: تم تصميم االمفرقعات بعناية لضمان السلامة. يتم إطلاقها من منصة مستقرة، ويتعامل معها المحترفون من خلال التدريب والاحتياطات المناسبة.

ما هي المواد الكيميائية المُستخدمة في صنع الألعاب النارية؟

تحتوي الألعاب النارية على مجموعة متنوعة من المواد الكيميائية التي تم اختيارها بعناية ودمجها لإنتاج التأثيرات المرئية والسمعية المرغوبة. فيما يلي بعض المواد الكيميائية شائعة الاستخدام في الألعاب النارية [2,3] :

المؤكسدات: توفر المؤكسدات الأكسجين لدعم عملية الاحتراق. تشمل المؤكسدات الشائعة المستخدمة نترات البوتاسيوم ونترات الصوديوم وكلورات البوتاسيوم. تطلق هذه المركبات الأكسجين عند تسخينها، مما يساعد على حرق المكونات الأخرى.

الوقود: الوقود عبارة عن مواد تحترق وتنتج طاقة على شكل حرارة وضوء. يشيع استخدام مسحوق الفحم والكبريت والألمنيوم كوقود. يوفر الفحم الكربون، الذي يتحد مع الأكسجين من المؤكسدات لإنتاج غاز ثاني أكسيد الكربون وإطلاق الطاقة. يعمل الكبريت كوقود ويساعد في الحفاظ على عملية الاحتراق. يضاف مسحوق الألمنيوم لتعزيز سطوع وكثافة الضوء الناتج.

الأملاح المعدنية: الأملاح المعدنية مسؤولة عن الألوان الزاهية التي تظهر في السماء. تنتج الأملاح المعدنية المختلفة ألوانًا مختلفة عند تسخينها. على سبيل المثال، تنتج أملاح السترونتيوم اللون الأحمر، وأملاح الباريوم تنتج اللون الأخضر، وأملاح النحاس تنتج اللون الأزرق، وأملاح الصوديوم تنتج اللون الأصفر. غالبًا ما يتم دمج هذه الأملاح المعدنية مع مركبات أخرى لإنشاء ألوان وظلال محددة.

المواد الرابطة: المواد الرابطة هي المواد التي تجمع المواد الكيميائية معًا. تشمل المواد الرابطة الشائعة الدكسترين، وهو نوع من النشا مشتق من الذرة أو البطاطس، والشيلاك أو اللّكّ، وهو مادة راتنجية يتم الحصول عليها من خنفساء اللاك. تساعد المواد الرابطة على الصاق المكونات والكيمياويات معًا لتشكيل الشكل المطلوب.

المبردات: تحتوي بعض التصميمات على مبردات لتقليل درجة حرارة الاحتراق ومنع الاشتعال المبكر للمكونات الأخرى. المبردات مثل كبريتات البوتاسيوم أو بيكربونات الصوديوم تمتص الحرارة وتساعد في الحفاظ على الحرق المتحكم فيه.

الدوافع: تستخدم الدوافع في المفرقعات ذات المكونات المتحركة، مثل الصواريخ أو المقذوفات. أنها توفر الدفع اللازم لدفع المفرقعات في الهواء. يستخدم المسحوق الأسود، وهو خليط من الكبريت والفحم ونترات البوتاسيوم، بشكل شائع كوقود دافع.

استخدامات الألعاب النارية

يستمر استخدام المفرقعات النارية على نطاق واسع لأغراض مختلفة في العصر الحديث. فيما يلي بعض الاستخدامات الشائعة للألعاب النارية اليوم [4] :

1. الاحتفالات والمهرجانات: تعتبر الألعاب النارية عنصر أساسي في الاحتفالات والمهرجانات في جميع أنحاء العالم. يضيفون عنصرًا مرئيًا مذهلاً إلى أحداث مثل ليلة رأس السنة الجديدة وعيد الاستقلال وديوالي ورأس السنة الصينية الجديدة والعديد من الاحتفالات الثقافية والدينية الأخرى. تخلق الألعاب النارية إحساسًا بالإثارة والفرح والمشهد، مما يعزز التجربة الكلية للمشاركين والمتفرجين.

2. الترفيه والعروض: يتم تنظيم عروض الألعاب النارية كأحداث ترفيهية قائمة بذاتها أو كجزء من عروض أكبر، مثل الحفلات الموسيقية والأحداث الرياضية ومناطق الجذب في المنتزهات الترفيهية. غالبًا ما تتميز هذه الشاشات بالموسيقى المتزامنة والتسلسلات المصممة وتصميمات الألعاب النارية المتقنة لخلق تجربة آسرة وغامرة للجمهور.

3. حفلات الزفاف والمناسبات الخاصة: أصبحت الألعاب النارية ذات شعبية متزايدة في حفلات الزفاف والمناسبات الخاصة الأخرى. يضيفون لمسة من الفخامة ويخلقون لحظات لا تنسى للزوجين وضيوفهم. يمكن تخصيص عروض الألعاب النارية لتتناسب مع موضوع الحدث أو مخطط ألوانه، مما يجعلها إضافة فريدة وساحرة للاحتفال.

4. أحداث الشركات والعلامات التجارية: تستخدم الشركات والمؤسسات المفرقعات لإحداث تأثير لا يُنسى أثناء إطلاق المنتجات والافتتاحات الكبرى وأحداث الشركات. إنها بمثابة مشهد بصري يجذب الانتباه ويعزز العلامة التجارية ويترك انطباعًا دائمًا لدى الحضور.

5. العروض الثقافية والفنية: تستخدم المفرقعات أيضًا كوسيلة للتعبير الفني والعروض الثقافية. ينشئ الفنانون وفنيو المفرقعات عروض معقدة ومذهلة بصريًا تحكي القصص أو تصور الأحداث التاريخية أو تعرض الإبداع الفني. غالبًا ما تجمع هذه العروض بين الألعاب النارية والموسيقى والرقص وأشكال أخرى من التعبير الفني.

نصائح عند استخدام المفرقعات

المفرقعات يمكن أن تكون خطيرة إذا لم يتم استخدامها بشكل صحيح. من المهم قراءة التعليمات بعناية واتباع جميع احتياطات السلامة عند استخدام المفرقعات [5,6].

فيما يلي بعض النصائح لاستخدام المفرقعات بأمان:

  • اتبع القوانين واللوائح المحلية: تختلف قوانين ولوائح الألعاب النارية حسب الولاية والبلد. قبل الاستخدام، تأكد من مراجعة القوانين واللوائح المحلية للتأكد من أنك تستخدمها بشكل قانوني وآمن.
  • استخدم الألعاب النارية في مكان آمن: يجب استخدامها فقط في منطقة مفتوحة وواضحة بعيدًا عن المباني والأشجار والأشياء الأخرى القابلة للاشتعال. تأكد من أن المنطقة خالية من أي مخاطر محتملة، مثل خطوط الكهرباء أو العشب الجاف.
  • لا تقم أبدًا بإعادة إحضار لعبة نارية: إذا فشلت الألعاب النارية في الاشتعال أو خرجت قبل أن تنفجر بالكامل، فلا تحاول إعادة إشعالها. انتظر 20 دقيقة على الأقل ثم انقعها في الماء قبل التخلص منها.
  • حافظ على مسافة آمنة: احتفظ دائمًا بمسافة آمنة من الألعاب النارية عند إشعالها. تختلف المسافة الموصى بها اعتمادًا على نوع الألعاب النارية، ولكن القاعدة العامة هي البقاء على بعد 30 مترًا على الأقل.
  • الإشراف على الأطفال: يجب ألا يتعامل الأطفال مع الألعاب النارية مطلقًا، ويجب دائمًا أن يشرف عليهم شخص بالغ مسؤول عند الاستخدام.
  • تخلص من الألعاب النارية بشكل صحيح: بعد استخدام المفرقعات، تخلص منها بشكل صحيح عن طريق نقعها في الماء ووضعها في وعاء معدني. لا تتخلص منها في سلة المهملات أو تتركها مستلقية.

المصادر:

  1. Americanpyro | History of fireworks
  2. Penn Today | The chemistry behind fireworks
  3. AGS | What minerals are used in fireworks?
  4. Kuoni | Fireworks celebrations around the world
  5. Kids health | Fireworks Safety
  6. Mayo clinic health system | Use caution with fireworks

المواد الزجاجية السبينية

يمكن إزاحة الوسخ أو كنسه تحت البساط، بيد أنه يقتضي الاهتمام به عاجلا أم آجلا. أما “الوسخ” في العلوم الفيزيائية فيمكن أن يكون اضطرابا في البنية، أو شوائب في المواد، أو تعارضا بين تفاعلات. فالوسخ يفسد الترتيب. إذ يستطيع قدر كاف من العشوائية وعدم الكمال واللانسجام أن يخرب التناظرات الأصيلة التي تسهل الوصف الفيزيائي إلى أبعد الحدود. وقد ترِكَ الوسخ طوال معظم تاريخ الفيزياء جانبا. ودرس الفيزيائيون بدلا منه النظم المرتبة كالبلورات التامة. إلا أنهم بحلول أوائل السبعينات شعروا بأنهم ملزمون بمواجهة خلل في الإنتظام. وبدأ الوسخ الذي قد تراكم فى أروقة العلم يتحلل. ولقد كانت دراسة المواد الزجاجية السبينية (Spin glasses)  إحدى أنجح المحاولات لفهم تلك النظم المضطربة. إن النماذج الرياضية لهذه المواد هي طرز أولية لمسائل معقدة في علم الحاسوب والكيمياء الحيوية وغيرها من العلوم. فما هي تلك المواد؟ وكيف نشأت؟

ماهي المواد الزجاجية السبينية؟

حالة الطاقة المنخفضة  أو The Ground State.

في البداية لنتفق على أن كل الأنظم تميل إلي الاستقرار وإلى الوصول إلى حالة ذات طاقة دنيا. فعند إحداث اضطراب ما بين ذرات المادة كرفع درجة حرارة _إلى درجة الحرارة الحرجة (Critical Temperature)_ قد تعانى تلك المادة انتقالا طوريا من حالة إلى حالة.[1] وبرفع ذلك المؤثر وانخفاض درجة الحرارة تتخذ الذرات ترتيبا يضمن لها أقل طاقة. [2]

إذا نظرت إل المواد الصلبة كملح الطعام مثلا، تجد أن ذرات الصوديوم والكلوريد يتخذان في الفراغ شكلا بلوريا منتظما يضمن لهم طاقة أقل واستقرارا أكثر، وكذا كل أشكال المواد الصلبة. وعلى النقيض الآخر، نجد بأن السوائل تفتقر إلى هذا الترتيب وتتحرك ذراتها أو جزيئاتها بصورة غير منتظمة وتأخذ أشكال الحاوية الموضوعة فيها. أما في حالة الزجاج، فنجد أنه ينتمي إلي فئة خاصة من المواد الصلبة غير البلورية. أي أنه صلب في درجات الحرارة العادية، غير أنه يفتقر إلى الترتيب البلوري المنتظم كالسوائل.

ومن الممكن اعتبار الزجاج السبيني في بنيته مماثلا لبنية الزجاج. فهو قد يتكون من بعض ذرات الحديد المبعثرة في شبيكة من ذرات النحاس، إلا أن خواصه معقدة جدا، وأحيانا تكون غير قابلة على نحو مضجر للتنبؤ بها. و”السبين” هنا هو السبين الميكانيكي الكمومي للإلكترونات الذي تنشأ عنه المغناطيسية.[3] أما ما نقصد ب”مادة زجاجية” فقد يخيل للقارئ للوهلة الأولى لحظة قراءة ذلك المصطلح، أن لفظة “زجاجية” تشير إلى صفة الزجاج الذي نراه في حياتنا اليومية. ولكنها تشير إلى حالة لوصف النظم المضطربة أو المتسخة كما ذكرنا سابقا. إذ هو خلل في انتظام توجهات السبينات وتفاعلاتها. إن الخصائص المثيرة للاهتمام العائدة للزجاج السبيني، وكذا ديناميكاتها ودرجة تعقيدها هي كلها ناشئة عن تفاعلات مغناطيسية بين ذراتها. فبعض الذرات تتصرف كما لو كانت قضبانا مغناطيسية، فتولد حقولا مغناطيسية وتخضع لحقول مغناطيسية. ولكي نفهم مالمقصود بذلك علينا إيضاح بعض المفاهيم المتعلقة بالخواص المغناطيسية أولا.

الخاصية المغناطيسية الحديدية (ferromagnetism)  والخاصية المغناطيسية الحديدية المضادة (Antiferromagnetism)

من المعروف أن ذرات الحديد تتميز بسلوك مغناطيسي. فعند تعرضه لحقل مغناطيسي خارجي، تسعى ذراته للاصطفاف في اتجاه محدد. ويعلل هذا الاصطفاف خواص الحديد المغناطيسية القوية، ولهذا فإنه يسمى ( المغنيطيسية الحديدية) (Ferromagnetism)  رغم أنه موجود أيضا في الكوبالت والنيكل ومواد أخري كثيرة.[4] وتنتج المغنيطيسية الحديدية من الطبيعة الميكانيكية الكمومية للإلكترونات الداخلية لهذا المعدن، حيث تجعل من المحبذ طاقيا للعزوم المغناطيسية الخاصة بالذرات المتجاورة أن تكون متوازية.

وبعبارة أخرى، إذا كان العزمان المغناطيسيان لذرتين متجاورتين ذواتي مغناطيسية حديدية يشيران إلى اتجاه واحد، فإنه لابد من بذل طاقة لقلب أحد العزمين المغناطيسيين إلى الإتجاه المعاكس. وعلى النقيض، إذا كان العزمان ذا اتجاهين متعاكسين تتحرر طاقة حين جعلهما متوازيين. ومن ثم تكون الطاقة المغناطيسية الكلية ذات قيمة صغرى إذا ما اتجهت العزوم المغناطيسية لجميع الذرات في اتجاه واحد.

إن إضافة طاقة حرارية لمادة الحديد يمكن أن يؤثر على اصطفاف السبينات. [5] فإذا سخِّن حديد نقي إلى درجات حرارة عالية فإن الطاقة الحرارية تتغلب علي التفاعلات المغناطيسية الحديدية. بحيث يتغير اتجاه كل عزم مغناطيسي من لحظة إلى أخري عشوائيا. ويمكن لصورة فتوغرافية لذرات الحديد أن تبين لنا أن عدد العزوم المغناطيسية المتجهة إلى الأعلي يساوي وسطيا العدد المتجه إلى الأسفل. كذلك الحال فيما يتعلق باليمين واليسار، وبالأمام والخلف. ويكون المجموع المتجه لجميع العزوم المغناطيسية، أو التمغنط الصافي صفرا. ويعرف الحديد في هذا الطور بأنه مادة (موافقة التمغنط) (Paramagnetic). وحين تخفض درجة حرارة الحديد، تصبح التفاعلات بين العزوم المغناطيسية هي الغالبة. ومن ثم تسعى العزوم إلى الاصطفاف فى حالة ذات طاقة دنيا. فتصطف في اتجاه واحد.

وبالمقابل يسود في أنواع أخرى من المواد ضرب مختلف من الترتيب في حالاتها منخفضة الطاقة. فذرات الكروم المتجاورة مثلاً تسعى لصف عزومها المغناطيسية في اتجاهات متعاكسة. فإذا ما اتجهت إحدى الذرات إلى أعلى اتجه عزم الذرة المجاورة إلى أسفل. ولما كان هذا السلوك مضادا لسلوك الحديد سميت هذه الخاصية ب ( المغنيطيسية الحديدية المضادة) (Antiferromagnetism) .

وتبدي المواد الزجاجية السبينية، على نحو لافت للنظر، خواص مغنيطيسية حديدية ومغنطيسية حديدية مضادة معاً. فمثلا، إذا مزجت بضعة أجزاء من الحديد ب 100 جزء من النحاس. فإن ذرات الحديد، التي تتفاعل عادة على نحو مغناطيسي حديدي، تستطيع الآن التفاعل على نحو مغناطيسي حديدي مضاد أيضا. وتسمي هذه العملية بالإشابة المغناطيسية (Alloy). وهو ما تحدثنا عنه في بداية المقال بالنظم المتسخه. فبإحداث قليل من الإشابة يمكنك الحصول على اضطراب فى النظام.

نجد أن إلكترونات التوصيل، التي تتحرك بحرية خلال النحاس، هناك سبين (spin) يتأثر بذرة الحديد المضافة علي نحو غريب بعض الشئ. وعلي مسافة معينة نجد أن ذرة الحديد قد أثرت علي اسبينات إلكترونات التوصيل لتوازي سبينها الخاص. ولكن علي مسافة أبعد قليلا تكون اسبينات الإلكترونات معاكسة لسبين ذرة الحديد. ثم علي مسافة أكثر بعدا تكون السبينات موازية، وهلم جرا.

إن نتيجة هذا السلوك المزدوج هي أنه يمكن لذرة ذات سبين معين ألا تكون قادرة على التوجه بحيث تحقق تفاعلها مع كل الذرات الأخرى في المواد الزجاجية السبينية. ولنتخيل ثلاث ذرات من الحديد موزعة عشوائيا في شبيكة من النحاس. فالذرة الأولي تتفاعل مع الثانية علي نحو مغناطيسي حديدي مضاد. في حين يكون التفاعلان بين الأولى والثالثة، وبين الثانية والثالثة مغناطيسيين حديدين. وليس هناك ثمة سبيل لتحقيق كل التفاعلات في وقت واحد. فإذا كان كان سبين الذرة الأولى متجها إلي أعلي مثلا، وجب أن يتجه سبين الثانية إلي أسفل. أما الثالثة فيفترض أن توجه سبينها في نفس اتجاه كل من الأولى ( السبين إلي الأعلي) والثانية ( السبين إلي الأسفل) . وإن أي ترتيتب سوف يخل بواحد من التفاعلات علي الأقل. ويسمي النظام الذي لايمكن تحقيق كل تفاعلاته في آن واحد (محبطا) (Frustrated).

إن إحدي نتائج الإحباط أو ال Frustration  هو إمكان وجود حالات كثيرة منخفضة الطاقة للمادة الزجاجية السبينية. [6] كما هو موضح بالشكل. إن البحث عن حالة منخفضة الطاقة من تلك الحالات يتطلب التسخين والتبريد_ أي الإحماء_ مشابها للصعود والهبوط. فإذا كانت درجة الحرارة منخفضة جدا، فإن النظام سيبقي في واد ضحل زمنا طويلا جداً. وبرفع درجة الحرارة يتاح للنظام مزيد من الطاقة للاستكشاف، إذا جاز التعبير. وفي وسع سبيناته أن تنقلب بسهولة، ومن ثم يزداد احتمال تملصه من الأودية الضحلة (طاقة أقل) ( كما هو موضح بالشكل)، ويستطيع محاولة تجريب كثير من التشكيلات السبينية المحتملة أكثر من سواها، التي يمكن أن يكون لبعضها طاقة أخفض من طاقة الحالة الإبتدائية.

وعلي هذا فإن ثمة خوارزمية بسيطة لإيجاد حالة منخفضة الطاقة نسبياً لزجاج سبيني، هي بمحاكاة درجة حرارة عالية (عندما يستطيع النظام، من حيث المبدأ أن يجرب أي حالة) ثم تبريد النظام ببطء بحيث يستقر في حالة أقل طاقة. فإذا علق مؤقتاً في مرحلة مبكرة، في واد عالي الموقع، فإنه يبقي لديه مع ذلك فرصة جيدة للانسحاب إلي أقرب ممر للبحث عن واد أعمق ( طاقة أقل). وبعد عدة دورات من التسخين والتبريد تصبح الخوارزمية ذات احتمال كبير لإعطاء حل جيد_ أي حالة منخفضة الطاقة_ ولو أن فرصة إيجاد الحل الأفضل مصادفة في ذلك الفضاء الضخم ضئيلة إلي أبعد حد.

طور جديد من المواد أم مجرد قطعة مغناطيس

إن التحول من سائل إلي بلورة، أو من مادة موافقة التمغنط إلي مادة حديدية التمغنط، عند انخفاض درجة الحرارة هو انتقال طوري حقيقي. ذلك أن الحالات الناشئة تحتفظ بترتيب متميز طوال المدة التي يحافظ أثنائها علي درجة الحرارة. ومن جهة أخري، فإنه حتي لو بدا أن الزجاج العادي يمثل طوراً جديدا فإنه، أساسا سائل: فهو يسيل بمعدل بطئ مذهل بحيث يبدو صلباً.

وبالمثل يمكن للمواد الزجاجية السبينية أن تكون طوراً متميزاً من مادة ذات ترتيب مغناطيسي، أو اصطفاف سبيني يدوم طوال المدة التي يحافظ أثنائها علي درجة الحرارة المنخفضة. ومن ناحية أخري، يمكنها أن تكون مواد متوافقة التمغنط تباطأت خواصها الديناميكية كثيرا بحيث تبدو أنها لاتكوِن سوي (طور ساكن) Static phase. ولو لوحظ أن سبينات مادة زجاجية سبينية، محفوظة في درجة حرارة منخفضة تغير توجهها، لاستطاع المرء أن يستنتج أنها مجرد مغناطيس من مادة موافقة التمغنط (Paramagnetic).

بالنظر إلي الصورة الموضحة، نري أن الزجاج السبيني يحافظ على صورته أطول فترة ممكنة من الزمن بانخفاض درجة الحرارة. فهو عالق في إحدي الأودية الضحلة التي عندها تتسم سبيناتها بخواص ديناميكية بطيئة للغاية وهو ما يشبه خواص الزجاج العادي. أما علي النقيض الآخر، فنري في حالة الحديد أنه بانخفاض درجة الحرارة فيتحول من طور المادة متوافقة المغناطيسية إلي طور المغناطيسية الحديدية بمعدل سريع للغاية.

ومن هنا نخلص أن مكونات الزجاج السبيني هي:

  1. وجود إحباط نتيجة قيود هندسية في الشكل أو اضطراب في النظام كالشوائب.
  2. درجة حرارة منخفضة لاتاحة الفرصة للوقوع في واد ضحل (طاقة أقل).
  3. خواص ديناميكية بطيئة تجعله تجعله معلق في أحد اأودية الضحلة لمدة طويلة.

تطبيقات الزجاج السبيني

دراسة طيات البروتينات Protein Folding

باستخدام نماذج الزجاج السبيني في الكيمياء الحيوية، يمكن للباحثين فهم وتحليل طيات البروتينات. فمن الممكن اعتبار المجموعات الأمينية المكونة للبروتينات كالسبينات (أو كقضبان المغناطيس كما أشرنا) في الزجاج السبيني. وبدوران تلك المجموعات يمكن اكتشاف ماهو الشكل الذي يضمن أقل للطاقة للبروتين ككل و أكثر استقرارا. وتمكننا نماذج الزجاج السبيني من فهم كيف طورت الخلايا من الآليات التي تمكنها من التغلب علي عملية الإحباط في دوران البروتينات, لتنتج لنا أشكالاً أكثر استقرارا. وعلي النقيض، فإن أي خلل في طيات البروتينات قد تنتج أشكالاً من الممكن أن تؤدي إلي أمراض.

المصادر

1- Critical Temperature

2-Energy Minimization

3-Quantum Spin

4-Ferromagnetism

5-The Science of magnets and temperature

6-Frustration and ground-state degeneracy in spin glasses

المسرع الخطي LCLS للأشعة السينية، من فكرة سلاح نظري لميكروسكوب لا سابق له

ظلت ليزرات الأشعة السينية مدة طويلة مادة خصبة للخيال العلمي. ولم يبدأ أول جهاز منها بالعمل لغرض علمي إلا قبل اثني عشرة سنة، وذلك في جامعة ستانفورد باعتبارها مرفقا تابعا لمكتب العلوم في وزارة الطاقة الأمريكية. ويستمد هذا الجهاز، المعروف باسم منبع الضوء المترابط للمسرع الخطي (LCLS) طاقته من أطول مسرع جسيمات خطي في العالم، في مختبر المسرع الوطني SLAC. وقدي جري بواسطته تكوين حالات غريبة للمادة لم تحصل في أي مكان أخر من الكون، وذلك بتعريض الذرات والجزيئات والجوامد لنبضات أشعة سينية ذات شدة عالية. فماهو هذا الجهاز؟ وما هي خصائصه؟

ألية عمل الأشعة السينية

إذا وضعنا ذرة أو جزيئا أو حبيبة غبار في وجه أقوى ليزر للأشعة السينية في العالم، فإنه لن يكون أمامها أي فرصة للنجاة. إذ تصل درجة حرارة تلك المادة المضاءة بالليزر إلى أعلى من مليون “كلفن” كما في حالة الشمس. وذلك في غضون أقل من جزء واحد من تريليون جزء من الثانية. وعلى سبيل المثال، تفقد ذرات النيون الخاضعة لمثل هذه الظروف الاستثنائية جميع إلكتروناتها العشرة سريعا وبمجرد خسارتها لغلافها الإلكتروني الواقي تنفجر مبتعدة عن الذرات المجاورة. ويمثل مسار حطامها مشهدا فاتنا جدا للفيزيائيين.

إن ما يجعل هذه العملية مدهشة هو أن ضوء الليزر يطرد إلكترونات الذرة من الداخل إلى الخارج. لكن الإلكترونات, التي تحيط بنواة الذرة على شكل طبقات مدارية شبيهة بطبقات البصل، لا تتفاعل جميعا بتجانس مع حزمة الأشعة السينية. لأن الطبقات الخارجية شفافة تقريبا لهذه الأشعة. ولذا فإن الطبقة الداخلية هي التي تقع تحت وطأة الإشعاع، تماما كما تسخْن القهوة في الفنجان الموضوع في فرن موجات ميكروية قبل الفنجان بمدة طويلة_ كما يتضح فى الشكل المقابل. فإن الأشعة السينية تقوم بطرد إلكترونات المدار الداخلي K _. وينطلق الإلكترونان الموجودان في تلك الطبقة إلى الخارج مخلفين وراءهما حيزا فارغا فتغدو الذرة جوفاء. وخلال بضع فيمتوثوان، تمتص إلكترونات أخرى إلى الداخل لتحل محل الإلكترونات المفقودة. وتتكرر دورة تكوين التجويف الداخلي وملء الفراغ حتى لا يتبقى أي إلكترون حول الذرة. وتحدث هذه العملية في الجزيئات وفي المادة الصلبة أيضا.[1]

لكن تلك الحالة الغريبة لا تدوم إلا بضع فيمتوثوان.  وفي الجوامد، تتفكك المادة إلى حالة متأينة, أي إلى بلازما كثيفة وساخنة لا توجد عادة إلا في ظروف استثنائية من مثل تفاعلات الاندماج النووي أو في مراكز الكواكب الضخمة. وعلى كوكب الأرض لا مثيل للحالة المتطرفة الخاطفة التي تنشأ عند تفاعل الذرة مع حزمة ليزر الاشعة السينية.

إحياء المسرع الخطي LCLS وفتح أفاق جديدة

 في الواقع استمد أول ليزر أشعة سينية طاقته من اختبار لقنبلة نووية تحت الأرض. فقد صنع ذلك الليزر من أجل مشروع سري اسمه إكسكاليبر Excalibur. ونفذه مختبر <لورنس ليفرمور> القومي. وكان ذلك الجهاز واحد من مكونات مبادرة الدفاع الاستراتيجي التي أطلقها الرئيس الأمريكي الأسبق <رونالد ريكان> والمسماة بحرب النجوم في ثمانينات القرن الماضي. حيث كان الغرض منها أن تعمل على إسقاط الصواريخ والأقمار الصناعية.[2]

إن الليزر المعروف بمنبع الضوء المترابط في المسرّع الخطي(LCLS) الموجود في مركز مسرّع ستانفورد الخطي (SLAC). يوقظ ذكريات منظومات “حرب‏ النجوم” المضادة للصواريخ تلك.[3] فقد قامت جامعة ستانفورد ببنائه كأطول مسرع إلكترونات في العالم. ويبلغ طول ذلك المسرع ثلاثة كيلومترات، ويبدو من الفضاء كإبرة موجهة إلي قلب الحرم الجامعي. إن ذلك المسرع الخطي مدين في نشأته للعديد من الإكتشافات وجوائز نوبل التى أبقت الولايات المتحدة فى طليعة فيزياء الجسيمات الأولية طوال عقود من الزمن. ومنذ إعادة إناطة مهام جديدة في الشهر 2009/10. غدت بالنسبة إلى فيزياء الذرة والبلازما والكيمياء وفيزياء المادة الكثيفة وعلم الأحياء، ما يمثله المصادم الهادروني الكبير (LHC). ويمكن لنبضات الأشعة السينية لمنبع الضوء المترابط LCLS أن تكون بالغة القصر ( بضع فيمتوثوان) إلي حد أنها تجعل الذرات تبدو جامدة. وهذا ما يمكن الفيزيائيين من رؤية التفاعلات الكيميائية أثناء حدوثها. وتلك النبضات شديدة السطوع أيضا، ولذا تسمح بتصوير البروتينات والجزيئات الحيوية الأخرى التي كانت دراستها شديدة الصعوبة.

ظلال الذرات وتصوير المسافات الضئيلة

يدمج ليزر الأشعة السينية أداتين من الأدوات الرئيسية التي يستعملها فيزيائيون اليوم التجريبيون. وهما منابع ضوء السنكروترونات Synchrotrons والليزرات الفائقة السرعة Ultrafast Lasers. أما السنكروترونات، فهي مسرعات مضمارية الشكل تدور الإلكترونات ضمنها وتصدر أشعة سينية تلج أجهزة قياس موضوعة حول محيط الآلة على هيئة دولاب ذي قضبان منبثقة من مركزه. وتستعمل أشعة السنكروترون السينية لدراسة أعماق الذرات والجزيئات والنُظم النانوية. فضوء الأشعة السينية مثالي لهذا الغرض، لأن أطوال موجاته من مقاس الذرة. [4] ولذا تولد الذرات ظلالا ضمن حزمة الاشعة السينية. وإضافة إلى ذلك، يمكن تعديل الأشعة السينية بحيث ترى أنواعا معينة من الذرات. كذرات الحديد فقط مثلا، وتبين مكان تموضعها ضمن الجسم الصلب أو ضمن جزيء كبير كجزيئات الهيمو جلويين (الحديد هو المسؤول عن اللون الآحمر للدم).

لكن ما تعجز عنه الأشعة السينية هو اقتفاء أثر الحركة الذرية ضمن الجزيء أو الجسم الصلب. فكل ما نراه حينئذ هو غشاوة باهتة. لأن النبضات ليست قصيرة ولا ساطعة بقدر كاف. ولا يمكن للسنكروترون تصوير الجزيئات إلا إذا كانت مصطفة على هيئة بلورات، حيث تقوم قوى موضعية بإبقاء الملايين منها في صفوف منتظمة.

وفيما يخص الليزرات، فإن ضوءها أشد سطوعا بكثير من الضوء العادي لأنه ضوء مترابط. إن الحقل الكهرومغناطيسي في الليزر ليس متموجا كسطح البحر الهائج، بل يهتز بنعومة وانتظام متحكم فيهما. ويعني الترابط ان الليزرات تستطيع تركيز طاقة هائلة ضمن بقعة صغيرة. وأنه يمكن إشعالها وإطفاؤها في برهة قصيرة من رتبة الفيمتوثانية.

التباين بين الأشعة السينية والليزرات العادية

وتعمل الليزرات العادية عند أطوال موجات الضوء المرئي والضوء القريب منه. وتلك أطوال أكبر بألف مرة من أطوال الموجات الضرورية لتمييز الذرات إفراديا. وعلى غرار رادار الطقس الذي يستطيع رؤية عاصفة مطرية دون تمييز قطرات المطر،  فإن الليزرات العادية تستطيع رؤية مجموعة متحركة من الذرات دون تمييزها إفراديا. فمن أجل تكوين ظل حاد للجسم المرصود يجب أن يكون طول موجة الضوء صغيرا ومن رتبة مقاس ذلك الجسم على الأقل. ولذا نحتاج إلى ليزر أشعة سينية. وباختصار يتغلب ليزر الأشعة السينية على الصعوبات والسلبيات التي تمثلها الأدوات الشائعة لتصوير المادة عند المقاسات الشديدة الضآلة. لكن صنع جهاز من هذا النوع ليس بالمهمة السهلة.

بدت فكرة بناء ليزر أشعة سينية غريبة في وقت من الأوقات.  باعتبار أن صنع أي ليزر أمر بالغ الصعوبة بحد ذأته. فالليزرات العادية تنجح في عملها لأن الذرات تشبه البطاريات الصغيرة. فهي تمتص مقادير قليلة من الطاقة وتخزنها ثم تصدرها على شكل فوتونات، أى جسيمات ضوء. وهي تحرر طاقتها تلفائيا عادة, إلا أن <أينشتاين> كان قد اكتشف فى بداية القرن العشرين طريقة لقدح تحريرها من خلال عملية تسمى الاإصدار المحرض Simulated emission. وإذا جعلتَ الذرة تمتص مقدارا معينا من الطاقة, ثم قذفتها بفوتون يمتلك مقدارا مماثلا من الطاقة، أصدرت الذرة الطاقة الممتصة ، مولدة نسخة من الفوتون. وينطلق الفوتونان (الأصلي والمستنسخ) ليحفزا تحرير طاقة من زوج من الذرات الأخري، ويتكرر ذلك مراكما جيشا مستنسخا في تفاعل متسلسل أسي. والنتيجة هى حزم ليزرية.

لكن حتي عندما تكون الظروف ملائمة، فإن الذرات لاتستنسخ فوتونات دائما. فاحتمال إصدار ذرة معينة لفوتون عند قذفها بفوتون آخر، قليل. وثمة فرصة أكبر لها لتحرير طاقتها قبل حدوث ذلك. وتتغلب الليزرات العادية على هذه المحدودية بضخ طاقة تملأ الذرات، مع استعمال مرايا ترسل الضوء المستنسخ جيئة وذهابا ليتلتقط فوتونات جديدة.

أما في ليزر الأشعة السينية، فيغدو تحقيق كل خطوة من هذه العملية أشد صعوية بكثير. ففوتون الأشعة السينية يمكن أن يمتلك طاقة أكبر بألف مرة مما يمتلكه الفوتون المرئي. لذا على كل ذرة أن تمتص طاقة أكبر بالف مرة. ولا تحتفظ الذرات بطاقاتها مدة طويلة. إضافة إلى أنه من الصعب الحصول على مرايا عاكسة للأشعة السينية. وعلى الرغم من أن هذه العوائق ليست جوهرية، فإن ثمة حاجة إلى طاقة هائلة لتكوين الظروف الليزرية.

أجزاء المسرع الخطي وآلية عمله

يعد منبع الضوء المترابط LCLS أقرب شئ تصنعه البشرية لمدفع سفينة فضاء ليزري ويستمد هذا الجهاز طاقته من مسرع جسيمات خطي. وهو نسخة مضخمة من المدفع الإلكتروني المستعمل في جهاز التليفزيون القديم الذي يطلق إلكترونات بسرعات قريبة من سرعة الضوء والمموج هو أساس هذا الاإختراع. إذ يجعل اللكترونات تسلك مسارا منعرجا. وكلما غيرت الإلكترونات اتجاهها في، أصدرت إشعاعا يتألف في هذه الحالة من أشعة سينية. ونظرا لأن الإلكترونات تتحرك بسرعة قريبة من سرعة الأشعة السينية التي تصدرها، فإن هذه العملية تغذي نفسها وتنتج حزمة استثنائية بشدتها ونقائها.[5]

مكونات الجهاز:

  1. ليزر التشغيل: يولد ليزر التشغيل نبضات ضوء فوق بنفسجي تقتلع نبضات من الإلكترونات من المهبط.
  2. المسرع: تسرع الحقول الكهربية الإلكترونات لتصبح طاقاتها 12 بليون إلكترون فولت. ويستعمل في منبع الضوء المترابط LCLS هذا كيلو متر واحد من الطول الإجمالي للمسرع SLAC. أي ثلثه فقط.
  3. ضاغط الحزمة 1: تدخل النبضات الإلكترونية ممرا منحنيا ذا شكل “S” مخفف يقوم بتسوية نسق الإلكترونات ذات الطاقات المتباينة.
  4. ضاغط الحزمة2: بعد جولة من التسارع. تدخل النبضات ضاغطا آخر أطول من الضاغط الأول. لأن طاقة الإلكترونات الآن أكبر.
  5. ردهة النقل: تقوم المغانط هنا بتكبير أو تصغير النبضات.
  6. ردهة المموج: تسبب مجموعة مغانط ذات قطبييات متناوبة حركة متعرجة للإلكترونات، محرضة إياها علي توليد حزمة أشعة سينية ليزرية.
  7. استخلاص الجزمة: يسحب مغنطيس قوي الإلكترونات ويدع الأشعة السينية تكمل طريقها.
  8. محطة منبع الضوء التجريبية: تقوم الأشعة السينية بعملها. حيث تضرب المادة وتقوم بمهمة التصوير.

المصادر:

1- Interaction of X-ray with Atoms

2-Excalibur Project

3- LCLS Overview II SLAC

4-Synchrotron

5-The Ultimate X-ray Machine

ما هي عملية الاستمطار وكيف يمكن التحكم بها؟

سعى الإنسان عبر التاريخ وربما عصور ما قبل التاريخ إلى تعديل الطقس بمجموعة متنوعة من الوسائل. استخدمت العديد من القبائل البدائية أطباء سحرة أو رجال طب لجلب السحب والأمطار خلال فترات الجفاف، ولإبعاد سحب المطر أثناء فترات الفيضانات. و ترجع الجهود ” العلمية” الجدية للاستمطار إلي منتصف القرن التاسع عشر حين كان الناس يجربون كل شيء كإطلاق نيران المدافع، أو إشعال الحرائق في الغابات للتأثير في السحب كي تمطر. ففي عام 1894 جرب أهال من نبراسكا فى الولايات المتحدة وضع حد لقحط شديد عن طريق تفجير عشرة براميل مليئة بالبارود. وكمثال على الغموض العلمي، لوحظ أن السماء أمطرت إثر ذلك رذاذا خفيفا لم تكن له أي فائدة، ولكنه كان يكفي فقط على تشجيع الناس على الاستمرار بالمحاولة واستنباط سبل جديدة. فما هي عملية الاستمطار ؟ وكيف يمكن التحكم بها؟

سحب بلا أمطار

تحتوى السحب المنتفخة على كمية كبيرة من الماء. حتي إن سحابة صغيرة منها قد يصل حجمها إلى 750 كيلومترا مكعبا. وإذا ما تصورت وجود نصف غرام من الماء في المتر المكعب من هذه السحابة، فإن تلك الكرات البخارية في الغلاف الجوي تظهر كأنها بحيرات سابحة في السماء. ولكنها قد لاتجود إلا بقطرات قليلة قبل أن تختفي وراء الأفق. ولكن إذا حالفنا الحظ أو تصرفنا بذكاء لمعالجة تلك المشكلة, فيمكننا وضع اليد على تلك الكمية التي تسبح فى الجو علي الدوام والتي تقدر بنحو 0.04% من المياه العذبة فى العالم. وقد أدي هذا الي حث الحكومات فى بعض الدول الي تزويد الغلاف الجوي بأيونات لاعتصار مزيد من الرطوبة منه. فعلي سبيل المثال، تنشر الحكومة الصينية جيشا للطقس من 48 ألف شخص وتزودهم ب 50 طائرة و 7 آلاف راجمة صواريخ و 7 آلاف مدفع من أجل انتزاع المزيد من الأمطار.

المبدأ وراء علم الاستمطار

إن السحب التي تأتي منها الأمطار تحتوى على قطيرات ماء بحجم الميكرون, حيث تكون حرارتها دون درجة التجمد. ولكنها لم تتحول بعد إلى جليد لأنها تفتقر إلى نوى ضرورية لكي تتجمع حولها. لنقل إنها بحاجة إلى جسيمات غبارية بالحجم المناسب تماما. وهذه القطيرات خفيفة بحيث تبقيها التيارات الصاعدة عالقة في الجو. وإذا جرى توفير نوى مناسبة فإن القطيرات تندمج وتأخذ شكل كريات صغيرة من الجليد سرعان ما تتحول إلى غيث عندما تتساقط مخترقة الجو الدافئ. وقد اخترع هذه التقانة «فونيكوت» [العالم في مجال الغلاف الجوي بمختبر البحوث التابع الشركة جنرال إلكتريك'” بنيويورك] فى عام 1946. حيث استخدم فونيكوت يوديد الفضة كبذور والتى تحاكي بنيته الجزيئية تلك الموجودة في بلورات الجليد. ففي سحابة باردة يعمل يوديد الفضة على جذب الماء للالتصاق به. ويقوم يوديد الفضة بهذه المهمة نظريا وحتى عمليا: إذ صرح طيارون أن بإمكانهم مشاهدة السحب وهي تتغير عندما ترشق بهذه المواد الكيميائية. [1][2]

قياس الفاعلية

لقد استحدثت العديد من التقنيات لقياس فاعلية عملية الاستمطار ولاسيما خلال السنوات العشر الأخيرة. ففي ثمانيات القرن الماضي استخدم «رادار دوبلر- Doppler Radar» الذى مَكنَ العلماء لأول مرة من رؤية تركيزات المياه ضمن إحدى السحب. تللك الآلة التي تنشئ تلك البقع الخضراء على خرائط الطقس التي نشاهدها على شاشة التلفاز.[3] وفي عام 2000 أحرز الرادار الثنائي الاستقطاب الذي يصدر إشارات موجية على كل من محوري الإحداثيات تقدما كبيرا. حيث أصبح بإمكانك أن تعرف ما إذا كانت السحابة تحتوي على مطر وأن ترى حجم وشكل قطرات المطر.[4] ومع حصولنا على بيانات أفضل, ازدادت قوة الحواسيب وقدراتها على تحليل هذه البيانات وقدرتها على إحداث نماذج افتراضية. حيث يمكنك إنشاء سحابة إفتراضية وتقوم بحقنها بيويد فضة افتراضي, ثم تلاحظ ما الذي سيحدث.

رحلة إلي أعماق السحب

لنفترض أنك أحد الطيارين المسئولين عن إطلاق أنابيب يوديد الفضة وتم استدعائك للقيام بتلك المهمة. كل ما عليك هو التوجه إلي المنطقة الأنسب من العاصفة وهي منطقة “التدفق”. تلك المنطقة هي القناة التي يرتفع فيها الهواء الدافئ والرطب ضمن العاصفة، ويؤدي هذا الهواء دور الوقود لها. وهي عبارة عن «حوالق شبحية- Ghostly tendrils» من الرطوبة مندفعة بسرعة نحو السماء. و يحمل التدفق يوديد الفضة على بعد 2000 قدم داخل السحابة حيث توجد المياه فائقة البرودة و التي ينبغي أن يصل إليها متسببا في تشكل أولي لبلورات الجليد.

ويستهدف الطيارون التدفق نظرا لكونهم لا يستطيعون الطيران داخل السحابة، فبإمكان الرياح العنيفة داخلها تمزيق الطائرة. وعوضا عن ذلك يدور الطيار حول النقطة المناسبة مطلقا عددا من الأنابيب مستخدما التدفق فى نقل الدخان الحامل ليوديد الفضة إلي داخل السحابة. وأحيانا تكفي طلقة واحدة لتحقيق الهدف وفي أحيان أخرى يتطلب الأمر إطلاق ما يصل إلى 50 طلقة. أما المدة التى يتطلبها تزويد السحابة بخطوط الفضة، فهى تتراوح بين 10 إلى 15 دقيقة. إن زراعة البذور لايحدث قطرات فحسب, فبإمكانه أيضا تغيير بنية السحب إلى بنية عمودية طويلة. الأمر الذي يجعلها أقوي في توليد المطر.[5][2]

المصادر:

1- Cloud Seeding| Wikipedia

2-Cloud Seeding – A Review| Al-Bayan Center for Planning and Studies

3-Doppler Radar| National Weather Service

4-Dual Polarization Radar| National Weather Service

5-Eight States Are Seeding Clouds to Overcome Megadrought| Scientific American

ما هو قياس الجهد الدوري Cyclic Voltammetry (CV) ؟

يعتبر قياس الجهد الدوري – Cyclic Voltammetry من أهم التقنيات لدراسة النشاط الكهربائي للمادة وسلوكها في المحاليل والتطبيقات المختلفة. فقد ذكرنا في مقال سابق عن الكيمياء الكهروتحليلية – Electroanalytical chemistry عن مدى احتياجنا لطرق تحليل دقيقة سريعة يمكن التحكم بكل معاملاتها حسب احتياجاتنا ودراستنا. ومع تطور العلوم والتكنولوجيا واتجاه العالم للتوصل لمصادر طاقة نظيفة مثل الهيدروجين الأخضر وتخزينها في أجهزة تخزين الطاقة من بطاريات ومكثفات ومكثفات فائقة التوصيل، أصبحنا بحاجة لتقنيات تمتاز بالدقة والسرعة لدراسة المواد المُستخدمة في التطبيقات المختلفة. فما هي تقنية قياس الجهد الدوري وتطبيقاتها في المجالات المختلفة؟

ما هي تقنية قياس الجهد الدوري – Cyclic Voltammetry (CV) ؟

قياس الجهد الدوري هو تقنية كهروكيميائية تُستخدم لقياس النشاط الكهربائي لمادة ما في محلول إلكتروليتي عن طريق تطبيق مدى جهد معين – Potential window (مثال: من 0.4 – إلى 0.4 فولت) وقياس التيار الناتج عن ذلك. حيث يتم تطبيق الجهد بمعدل مسح خطي مع الزمن كما موضح بالشكل التالي E-t curve وينتقل إلى الأمام إلى جهود مؤكسدة أكثر إيجابية. وتكون استجابة المادة في صورة تيار كما موضح بالشكل I-E curve . بعد ذلك، يتم عكس نافذة الجهد من 0.4  إلى 0.4- فولت ويتم قياس النشاط الكهربائي في صورة تيار في الاتجاه المعاكس.

يتم قياس الجهد الدوري باستخدام خلية كهروكيميائية ثلاثية الأقطاب، ويتم تطبيق الجهد على قطب العمل. في المثال الموضح بالشكل، تحدث عملية أكسدة لمادة قطب العمل، بمجرد تطبيق الجهد الكافي لأكسدة المادة. وتستمر المادة في فقد الإلكترونات، مما ينتج تيار كهربي حتى تتأكسد الأيونات تمامًا حول القطب، فيتناقص التيار مجددًا.
يستمر انعكاس المسح إلى الجهود السلبية في اختزال المادة، حتى تصل الجهود المُطبقة إلى القيمة التي يمكن فيها إعادة اختزال الأيوانات المؤكسدة (التي تراكمت على سطح القطب). وتتمثل النتيجة في مخطط مميز على شكل يُعرف باسم مخطط الفولتاموجرام الدوري [2].

ما فائدة قياس الجهد الدوري – Cyclic Voltammetry (CV)؟

لإجراء قياس الجهد الدوري، عليك أن تبدأ بإضافة محلول الإلكتروليت إلى خلية كهروكيميائية ثلاثة أقطاب كهربائية. بعد ذلك، استخدم potentiostat لتمرير أو تطبيق الجهد الكهربائي على جهد العمل. عندما يصل الجهد إلى الحد المحدد مسبقًا في نافذة الجهد، فإنه سيعود في الاتجاه المعاكس. ومن الشكل الناتج E-I curve يمكننا الآتي [2] :

  1. العثور على معلومات حول ديناميكا عمليات الأكسدة والاختزال إذا وُجدت. فمثلًا توجد مواد عديدة لا تتأثر بالجهد الكهربي مثل المواد الكربونية. فالمادة الكربونية يمكنها تخزين الشحنات عن طريق طبقات الشحنات المزدوجة وليس عن طريق التفاعلات الكهروكيميائية. فبهذه الطريقة يمكننا التعرف على سلوك المادة وكيفية تخزينها للطاقة.
  2. التعرف على المادة المجهولة، وذلك عن طريق معرفة قيمة منتصف الجهد Ep/2 والتي تعتبر قيمة مميزة لكل عنصر.
  1. تحديد ما إذا كانت التفاعلات الكهروكيميائية للمادة انعكاسية – Reversible، أم غير انعكاسية – Irreversible، أو شبه انعكاسية – Quasi-reversible.
  1. معرفة عدد الإلكترونات الداخلة في التفاعل الكهروكيميائي الانعكاسي بتطبيق المعادلة الآتية:
  1. معرفة تركيز مجهول من خلال معادلة راندليس سيفجيك – Randles-Sevcik equation

حيث id هو التيار المحدود بالانتشار، وA هي منطقة القطب، و D0 هو معامل الانتشار للتحليل، و C0/ ∂x تدرج التركيز على سطح القطب. ويمكن اعتبار ناتج معامل الانتشار وتدرج التركيز على أنه التركيز المولي ( mol · cm-3).

ما هي تطبيقات قياس الجهد الدوري – Cyclic Voltammetry (CV)؟

  1. يتم استخدام قياس الجهد الدوري لمعرفة آلية تخزين المكثفات فائقة التوصيل للشحنات. كما تستخدم في معرفة ما إذا كانت مكثف فائق يعتمد على التفاعلات الكهروكيمياكئية الانعكاسية أم على آلية الشحنات المزدوجة. وكذلك لمعرفة نافذة الجهد المناسبة للبطاريات والمكثفات فائقة التوصيل. مما يمكننا من استخدام هذه المعلومات لتحسين تصميم وأداء المواد لمجموعة متنوعة من التطبيقات، مثل البطاريات وخلايا الوقود والمحفزات.
  2. في التحليل الكهروكيميائي للماء، يتم استخدام هذه التقنية لحساب مساحة السطح النشطة كهروكيميائيًا في قطب العمل عن طريق تنفيذ الجهد الدوري في نافذات جهد مختلفة بمعدلات مسح متباينة.
  3. للكشف عن وجود مواد كيميائية معينة في المحلول. يمكن استخدام هذا لمراقبة جودة المياه والطعام والمنتجات الأخرى مثل الأدوية ومستحضرات التجميل. ويمكن استخدامه أيضًا للكشف عن الملوثات والسموم في البيئة.
  4. يمكن الاستعانة بقياس الجهد الدوري وبعض التقنيات الكهروتحليلية الأخرى مثل قياس التوصيلية والمقاومة الكهربية لدراسة تآكل المعادن. يساعدنا ذلك على فهم ميكانيكية تآكل المعادن والسبائك لتطوير طرق لمنع التآكل في الأوساط المختلفة. يمكن استخدام هذه المعلومات لحماية الهياكل المعدنية مثل الجسور والسفن من التآكل.
  5. معرفة مدى ثبات المادة كهروكيميائيًا من خلال القيام بقياس الجهد الدوري لدورات عديدة (1000 دورة أو أكثر).

يعتبر قياس الجهد الدوري أول تقنية يتم تطبيقها لدراسة سلوك المادة النشطة كهروكيميائيًا في محلول معين أو لدراسة تركيز مادة ما في المحلول. ويمكن دراسة وملاحظة الكثير من الخصائص بهذه التقنية ولذلك نجدها في تطبيقات عديدة [1,2].

المصادر

  1. A Practical Beginner’s Guide to Cyclic Voltammetry | J. Chem. Educ
  2. Further Physical Chemistry: Electrochemistry session 10 | Andrew McKinley YouTube Channel

ما هو الجدول الدوري وما أبرز معالمه؟

يعد الجدول الدوري بالدرجة الأولى واحدًا من رموز العلم؛ فلم يتوقع ديمتري مندلييف أن ملاحظته لتشابه عدة عناصر كيميائية في الخواص وتدرجها بالوزن الذري ومحاولته تفنيدها وفقًا لذلك في مجموعات أنه سيبدأ بعملٍ خالدٍ ومرجعيٍ يعود له الباحثين والعلماء في الكيمياء.

من المعروف بأن من هو على اطلاع بالفن له نظرة خاصة ونوعية للّوحات الفنية لا يملكها العوام. فالفنان لا يرى لوحة الموناليزا مثلًا كامرأة متهكمة بملامح باردة، بل يثّمنها لأنه عليم ملمٌ بمواطن الإبداع والعبقرية فيها.

كذلك الأمر عند حديثنا عن الجدول الدوري، فهو لوحة فنية بعيون الكيميائي، نجمت عن جهود متراكمة لعدد من العلماء على مدار أعوامٍ من العمل الدؤوب المتواصل. إذًا، كيف تم ترتيب هذه العناصر؟ وعلى أي أساس؟ وهل اكتشفنا جميع العناصر وحصرنا عددها أم لم ننتهي بعد؟

لمحة عامة عن الجدول الدوري

اكتسب الجدول الذي يجمع العناصر الكيميائية لفظة “الدوري” للدلالة على ترتيب العناصر فيه بشكل متسلسل متدرج بالحجم -بازدياد نصف القطر الذري– في الدور الواحد (السطر الأفقي)، مع ترتيب العناصر في أعمدة (سطور رأسية) بناءً على العدد الذري، والتوزيع الالكتروني والخواص الكيميائية. سمح ذلك للباحثين بالتنبؤ بخواص عناصر لم تُكتشف أو تُدرس بعد بحسب موقعه المُمَهد له في الجدول الدوري!

يضم الجدول الدوري 7 أدوار (سطور) و18 فصيلة (عمود)، ويسوده المعادن ثم أشباه المعادن واللامعادن. وبالنظر للتوزيع الإلكتروني في الطبقة السطحية، يعبر العمودين الأوليين في جهة اليسار عن المعادن القلوية عن “القَطَّاع s”، أما الأعمدة الستة في جهة اليمين تعبر عن “القَطَّاعp “. والعناصر التي في أوسط الجدول “القَطَّاعd “، وأخيرًا، العناصر التي في أسفل الجدول ومنفصلةٍ عنه “القَطَّاعf”.

مراحل تطور الجدول الدوري تاريخيًا

قام مندلييف بوضع نموذج أولي بسيط للجدول الدوري في ستينات القرن التاسع عشر، ليعرض ابتكاره على الجمعية الكيميائية الروسية عام 1869 لتعتمده الأخيرة وتنشره.

عصر المفاعلات النووية

بحلول عام 1940 تم اكتشاف 92 عنصرًا في الطبيعة انتهت بأثقلها “U – اليورانيوم “. إلا أن شغف العلماء والباحثين قادهم إلى تصنيع 26 عنصرًا جديدًا في المفاعلات النووية عبر ما يعرف بتفاعلات الاندماج النووي (دمج نواتي ذرتين لخلق ذرة جديدة). ولمّا كانت النواتين الداخلتين في التفاعل النووي موجبتي الشحنة، وجب تطبيق قوة تفوق التنافر الكهربي الساكن بين الشحنتين المتماثلتين. وقوة التنافر تلك تزيد عن قوة انفجار الديناميت TNT بملايين المرات، لذلك عملية التخليق أو التصنيع النووي ليست ببساطة عملية تصنيع مركب كيمائي [1].

تمت دراسة بعض هذه العناصر كيميائيًا وإضافتها جميعًا للجدول الدوري، ودعيت لاحقًا “بعناصر ما بعد اليورانيوم” لأنها تَلي عنصر اليورانيوم في الجدول الدوري. وفي نفس العام، تم تصنيع العنصر (93) “Np – النبتونيوم” والعنصر (94) “Pu – البلوتونيوم” ثم تصنيع كل من “Am – الأمريكيوم” (95) و”Cm – الكوريوم” (96) عام 1944 [1].

غلين سيبورج ومساهماته في الجدول الدوري

اعتقد العلماء بإمكانية وضع العناصر الجديدة في أوسط الجدول الدوري، إلا أنه كان ل «غلين سيبورج» رأيٌ مختلف. إذ تنبأ غلين وفقًا للتوزيع الإلكتروني للعناصر الجديدة بخواص جديدة ومتفردة ، بناءً عليه، اقترح نموذجًا للجدول الدوري تكون فيه تلك العناصر بدورين (سطرين) أسفل الجدول الدوري. ووضع غلين العناصر الجديدة بمعزلٍ لتحري التبسيط في العرض وهما اللانثانيدات والأكتيندات على الترتيب، وهو ما تم تأكيده بمرور الوقت والعمل به. ليستحق غلين بذلك جائزة نوبل في الكيمياء عام 1951 مناصفّةً مع ماكميلان؛ فضلًا عن جهودهما الرائدة في تصنيع 9 عناصر ما بعد اليورانيوم. ولعل تشريف اسم غلين سيبورج في عنصر “Sg – السيبورجيوم” يرقى عن الذي تكتنفه جائزة نوبل [1].  ليتوالى بعدها تخليق عناصر جديدة منتهيةً بآخر عنصر “Og – الأوغانيسون” عام 2016 ذو العدد الذري (118).

ومنذ ذلك الوقت عكف العلماء والباحثين على تخليق عناصر جديدة ذات العدد الذري (119) و(120)، إلا أنه ولسوء حظوظهم، لم تتكلل جهودهم بالتوفيق إلى يومنا هذا. معتبرين بأن النتائج المنشودة تتطلب فهمًا أكبر للتفاعلات النووية وفيزيائها. كما أنها فرصة مناسبة لنَذكر بأن عالمنا سيبورج نفسه تنبأ عام 1969 باتساع الجدول الدوري في المستقبل ليحتوي على (172) عنصر مما يتوجب إضافة دور (سطر) ثامن له، مع ضرورة وضع العناصر ذات العدد الذري التي تساوي (120) وتزيد عنه في قَطّاع جديد ” القَطَّاع g ” نظرًا لاختلاف التوزيع الإلكتروني في طبقتها السطحية، ومنه اختلاف في الخواص الكيميائية [2]. كما تم اقتراح نموذجين جديدين للجدول يتلاءما مع هذا التحديث [3].

عصر النكليدات Nuclides

تُعرف النكليدات بأنها مفهوم محيط ولفظ عام للنظائر، والنظائر هي عناصر لها نفس العدد الذري ولكن باختلاف العدد الكتلي. فمثلًا لذرة الكلور نظيرين في الطبيعة لهما الكتلتين 37 و35. للإيضاح، تخيل عزيزي القارئ لو أنه زاد وزنك مؤخرًا، فهل ستتغير شخصيتك ومعتقداتك وأفكارك؟ بالطبع لا، إذًا لا يوجد اختلاف في الخواص الكيميائية بين نظيري الكلور، وإنما في الكتلة والنشاط الاشعاعي. بتطور العلم استطاع البشر تصنيع ما يزيد عن 4000 نكليد من أصل 118 عنصر! [4]

للنكليدات استخدامات مختلفة في الطب والبحث العلمي والتحليل الكيميائي، وغيرها. وقصارى القول، إن فهم الجدول الدوري واتساقه وتطوره، يمنحنا فكرة متواضعة عن مدى تطور فهم البشرية للكيمياء بمرور الوقت. ويبقى السؤال المُحير، هل للجدول الدوري نهاية؟ أم أنه مترامي الأطراف بانتظار زيادة علمنا فيزداد اتساعًا؟!

المصادر

1. Periodic Table & Transuranium Elements Lesson Plan (acs.org)

2. The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements | SpringerLink

3. Periodic table of elements revisited for accommodating elements of future years on JSTOR

4. Karlsruhe Nuclide Chart – New 10th edition 2018 | EPJ N (epj-n.org)

ما هي كيمياء السطوح وما أهم تطبيقاتها؟

إن كيمياء السطوح المعروفة باسم “Surface Chemistry” ذات أثر بالغ في حياتنا اليومية. فهي تدرس الحوادث والظواهر التي تحدث عند السطح الفاصل بين طورين مختلفين؛ فما هي أبرز تلك الحوادث؟ وكيف تمكن العلماء من تكريسها في تطبيقات صناعية وطبية وهندسية تنعكس إيجابًا على حياة البشر وتسهلها بشكل ملحوظ؟

الامتزاز والامتصاص

بادئ ذي بدء، علينا التحدث عن العمود الفقري للظواهر السطحية، ألا وهو “الامتزاز-Adsorption”. فلا تخلو أي عملية كيميائية منه تقريبًا. إنّ أول من أطلق لفظ الامتزاز هو الفيزيائي الألماني “هنريش كايزر” عام 1881. ويعرَّف الامتزاز بتموضع مادة على سطح مادة أخرى، فمثلًا تتموضع الأجسام الصلبة على سطحها، أي تمتز عليها، جزيئات الغاز في الجو دون أن تدخل جزيئات الغاز في بنية الأجسام الصلبة. أما عندما تتغلغل وتدخل جزيئات مادة في أخرى نطلق على هذه الظاهرة اسم الامتصاص؛ كما يحصل حال تبلل قطعة الإسفنج بالماء.

تطبيقات كيمياء السطوح الصناعية

تلعب بعض المركبات الصلبة دور حفّاز (وسيط)، يسرع من حدوث تفاعل يجري بدونها أساسًا ولكن ببطء. إذا كانت المتفاعلات في الطور الغازي أو السائل، نصبح أمام تفاعل يحوي عدة أطوار (حالات فيزيائية)، لذلك نطلق عليها لفظ (حفّازات غير متجانسة). ويتمثل مبدأ العملية بامتزاز المتفاعلات على سطح الحفاز ليسير التفاعل بحركية عالية. استخدمت الحفّازات في صناعة مركبات كيميائية بكميات ضخمة في أوائل القرن 19. لتلك المركبات وعلى بساطتها دورًا جليًّا في تقدم أي صناعة كانت مثل: “حمض الكبريت-H2SO4″، و”حمض النتريك-HNO3″، و”غاز الأمونياك-NH3 ” .

وبعد نجاح تلك العمليات، أخذت تتضمن الصناعة الكيميائية التفاعلات الحفزية بمنحىً أكثر تعقيدًا؛ كإنتاج «الميثانول-CH3OH» من غازيّ «أُحادي أكسيد الكربون-CO»، و«الهيدروجين-H2»، وأكسدة «الايثلين-C2H4» للحصول على «أوكسيد الايثلين-C2H4O» الذي يصَنَّع منه «الايثلين غليكول-C2H6O2» )مانع تجمد الماء اللازم لتبريد محركات للسيارات). كما استخدمت في حذف الهيدروجين من كل من «البيوتان-«C4H10  لإنتاج «البيوتادايين-C4H6» الذي يدخل في صناعة المطاط، و«البروبان-C3H8» و«الإيثان-C2H6» لصناعة البلاستك PP وPE على الترتيب[1].

في أوائل القرن الماضي، دخلت الحفازات ميدان النفط لتثبت جدارتها في تسريع وتيرة التطور الاقتصادي. ففي النفط مشتقات لا تصلح لاستخدامها كوقود أو للصناعات البتروكيميائية. فيُعمَد إلى إدخالها في تفاعلات برعاية حفازات سيراميكية “zeolite”؛ وهي التكسير الحفزي (والتكسير الحفزي هو تصغير لعدد ذرات الكربون في المشتق النفطي لتصبح صالحة للاستخدام في الوقود أو الصناعات البتروكيميائية) متحولةً لمركبات أخفّ صالحة للتطبيقين آنفيّ الذكر [1].

 يتمحور اليوم دور الحفازات صناعيًا حول إعطاء نواتج بشكل انتقائي، وذلك بمفردها دونًا عن غيرها من نواتج ثانوية. حيث تعتبر النواتج الثانوية -أحيانًا- مُضرّة للبيئة، أو ليس لها جدوى، حيث تصرف الطاقة والوقت في صناعتها دون طائل. فمثلًا، أضحت عملية تصنيع أوكسيد البروبلين الذي يعَد المادة الخام لإنتاج البولي يوريثان (الإسفنج الصناعي)، اليوم تتم بمفاعلة البروبلين مع «بيروكسيد الهيدروجين-«H2O2 بواسطة حفّاز من «سيلكات التيتانيوم-Ti-silicate»، بعد أن كان حدوث التفاعل يتم باستخدام غاز الكلور السام، أو بمرافقة منتجات ثانوية كالستايرين [2].

التطبيقات الهندسية لكيمياء السطوح

1- مضادات للتآكل

في العديد من التطبيقات العملية تؤدي تفاعلية بعض الأسطح تجاه بيئتها مثل درجة الحرارة، وسائل أكّال، والغاز، والإشعاع إلى تآكل كيميائي أو اهتراء ميكانيكي بفعل الاحتكاك. ويقود التآكل أو الاهتراء إلى ضياع في المادة والطاقة، وهو أمر غير مرغوب بالتأكيد [10]. وعليه نلجأ لطلاء السطح بمادة مُبطئة للتآكل؛ قد تكون أوكسيدًا معدنيًا مثل أوكسيد الكروم المطلي على سطح الستانلس ستيل، أو بوليمر خامل مثل التيفلون أو التيفال المطلي على المقلاة. ويتجلى دور هذه المواد في تثبيط حركية تفاعل التآكل [11] [12] [13].

لكن من منظور آخر، قد تُمثل تلك المواد مصدر قلق في حال خَدشها؛ إذا وضعت في بيئة غير ملائمة، كما حدث مع تلسكوب هابل الفضائي المطلي بالتيفال الألوميني. فقد تدهورت بنية التليسكوب عند تعرضه للإشعاع فوق البنفسجي وتشكل الجذور الحُرة لـ 19 عامًا [13].

2- المُزلقات

المزلقات هي مواد توضع بين سطحين صلبين يكونا في حالة حركة مستمرة. وتساعد المُزلقات على تقليل الاحتكاك والاهتراء عند السطوح البينية [14]. وتحوي زيوت التزليق على هيدروكربونات يتراوح عددها من 14 إلى أكثر من 40 ذرة كربون، وهي ذات طبيعة (أروماتية- نفتينية- أليفاتية) [15]. كما تحتوي بعض الإضافات لتعزيز أداء الزيت تحت الإجهاد الشديد للآلات التي منها (العربات، ومحركات الاحتراق الداخلي؛ والتوربينات، والضواغط والأنظمة الهيدروليكية).

لا تقتصر المُزلقات على السوائل، بل يمكن أن تكون صلبة ذات بنية مؤلفة من طبقات تنزلق تحت الضغط لتؤدي الغرض المطلوب مثل؛ الغرافيت، و«ثنائي كبريتيد التنغستين-WS2» [15].

 تستخدم المُزلقات الصلبة في توربينات الغاز ذات الحرارة العالية. كما تستخدم أيضًا في تطبيقات الفضاء الخارجي لأن نظيراتها السائلة غير ثابتة، فتتبخر عند شروط كهذه. ومن التطبيقات الهامة للمُزلقات تغطية القرص الصلب (CD-DVD) »بطبقة رقيقة جدًا- «Film لحمايته من الخدوش والتَلف عند استعماله [16].

التطبيقات الطبية لكيمياء السطوح

في أواخر أربعينيات القرن الماضي، ومع تطور المواد الحيوية مثل الغرسات الطبية؛ كالعدسات داخل العين، واستبدال مِفصل الورك، وأجهزة التماس مع الدم، بدأ الباحثون باستكشاف التفاعلات التي تحدث على السطوح. وبناءً على العديد من المشاهدات التجريبية، لاحظوا علاقتها بخواص السطح نَفسه [3].

على سبيل المثال: عندما تدخل مادة غريبة داخل الجسم وتصبح على تماس مع الدم، سيمتز عليها مباشرةً عدة بروتينات بشكل انتقائي، مشَكِّلةً المرحلة الأولية. تليها لاحقًا التصاق الصفائح الدموية لتلعب الدور الرئيس في تجلّط الدم. وقد تم تطوير العديد من الاستراتيجيات لتعديل السطح منعًا للتجلّط [4] [5] [6].

مثالٌ آخر: تتمثّل فكرة عمل جهاز استشعار الجلوكوز المُستخدم من قِبل مرضى السكري لمراقبة مستوى السكر في الدم بمواجهة الجلوكوز بطبقة من أنزيم جلوكوز أوكسيداز على «قطب -Electrode» أوكسجين. فيحفِّز الأوكسجين بشكل انتقائي أكسدة الجلوكوز في الدم معطيًا مركب بيروكسيد الهيدروجين [7]. ويتناسب تركيز بيروكسيد الهيدروجين طرديًا مع الجلوكوز. ويتم الكشف عنه إما إلكتروكيميائيًا أو عبر مُحول بصري. إلكتروكيميائيًا أي يتفاعل بيروكسيد الهيدروجين على قطب كهربائي معطيًا شحنات كهربائية. كلما زاد عدد الشحنات، زاد تركيز المركب [8]. اما مُحول بصري، ففيها يتفاعل بيروكسد الهيدروجين مع مركب على شريط ليظهر اللون الأزرق؛ وتزداد شدة اللون بزيادة تركيز بيروكسد الهيدروجين [9].

ونافلة القول وفق ما تم ذِكره، بات علم السطوح من العلوم الواعدة بما تحمل من تقدم مستمر وتطبيقات واسعة لا شُطآن لها. وما زال العلماء عاكفين على المضي في هذا المضمار. فلا نعرف ما الذي سيحمله المستقبل في هذا المجال بعد.

المصادر:

1- Researchgate
2- NCBI
3- Sciencedirect
4- Pubmed
5 – Sciencedirect
6- Pubmed
7- NCBI
8- NCBI
9- ACS Publications
10- Springerlink
11- Springerlink
12- Scirp.org
13-jstor.org
14- NCBI
15- Academia
16- Sciencedirect

مفاهيم أساسية لعلم الأدوية

يهتم علم الدواء بدراسة الخصائص التركيبية للعقاقير، وكيفية تصميم الأدوية وتصنيعها، والتقنيات الدوائية، والتداخلات الدوائية، ودراسة السموم، والخصائص العلاجية والتطبيقات الطبية والمضاعفات والآثار الجانبية للعقاقير الطبية. هناك العديد من المصطلحات الطبية والعلمية التي تخص الدواء، غالبًا ما يتم الخلط بينها ويتم التعامل معها على أنها مترادفات، سأتطرق في هذا المقال للضروري منها، وأوضح أهم المفاهيم الأساسية لعلم الأدوية.

خاصيتين رئيسيتين للدواء:

غالبًا ما يتم الخلط بين فعالية وفاعلية دواء معين، من المهم التمييز بين هذين الخاصيتين، إذ إنهما ليستا مترادفتان، ونستطيع من خلال المنحنيات المتدرجة للجرعة والاستجابة، تحديد خاصيتين رئيسيتين للأدوية، وهما الفاعلية والفعالية.

الفعالية Efficacy:

هي قدرة الدواء بعد الارتباط بالمستقبلات على إحداث تغيير يؤدي إلى تأثيرات معينة. تُعرف باسم الفعالية القصوى Emax، أي قدرة الدواء على إنتاج أقصى استجابة، بمعنى آخر، هي الاستجابة القصوى التي يمكن أن يثيرها الدواء، أو قدرة الدواء على إثارة استجابة فسيولوجية عندما يتفاعل مع مستقبلات.

الفاعلية potency:

هي مقياس مقارن للجرعات المختلفة لدوائين مطلوبين لإنتاج نفس التأثير الدوائي. تُعرف باسم قوة الدواء. بمعنى آخر، هي كمية الدواء اللازمة لإنتاج استجابة معينة.

مثال لكل من الفعالية والفاعلية:

بشكل عام، ينتج المورفين مستوى مثاليًا من التسكين غير ممكن مع أي جرعة من الأسبرين. وبالتالي، فإن المورفين أكثر فعالية من الأسبرين. وبالمثل، فإن فوروسيميد مدر للبول، ولديه قدرة أكبر على التخلص من الملح والسوائل من البول أكثر من الميتولازون. لذلك فإن للفوروسيميد فعالية أكبر من الميتولازون.

من ناحية أخرى، يستخدم 500 ملغ من الباراسيتامول و 30 ملغ من المورفين كمسكن. هنا، تتطلب جرعة صغيرة من المورفين إنتاج تأثير مسكن. بالتالي، فإن فاعلية المورفين أقوى من الباراسيتامول.

بعض الفروقات ما بين الفعالية والفاعلية:

  • تُقدَّر الفعالية بمقارنة الاختلافات في الاستجابة الأعلى بتركيزات أو جرعات دوائية عالية. من ناحية أخرى، يتم تقدير الفاعلية بمقارنة الجرعة (ED50).
  • تعتمد الفعالية على التركيز في موقع التأثير، وعدد ارتباط مستقبلات الدواء، والعوامل النفسية، وكفاءة اقتران تنشيط المستقبل بالاستجابات الخلوية. حيث أن فاعلية الدواء تعتمد على ألفة المستقبلات لربط الدواء ومدى فعالية تفاعل الدواء مع المستقبلات التي تؤدي إلى الاستجابة السريرية.
  • تعتبر الفعالية عنصرًا حاسمًا في اختيار دواء من بين أدوية أخرى من نفس النوع. بينما الفاعلية عنصر حاسم في اختيار جرعة الدواء.
  • الفعالية أكثر أهمية من الفاعلية، حيث أن الدواء ذو الفعالية الأكبر من الفاعلية يكون أكثر فائدة علاجية.
  • الفعالية مفيدة في تحديد الفعالية السريرية للدواء. بينما فاعلية الدواء مفيدة في تصميم أشكال الجرعات.

اختبار الفعالية والفاعلية:

فعالية وفاعلية الدواء لا يتم قياسها حتى المرحلة الثانية من التجارب السريرية. وهو خطر حقيقي في اكتشاف الأدوية، كما أنه يفسر سبب وجود الكثير من الأدوية التي تفشل في المرحلة 2 من التجارب السريرية. من أجل تقليل مخاطر الفشل، تقوم الشركات بعملية تسمى التحقق من صحة الهدف، وهو التأكد من ان الارتباط بين الدواء والهدف سوف ينتج عنه فائدة علاجية للإنسان.

الآثار الجانبية للدواء:

عندما يتناول المريض الدواء، يحدث نوعان من التأثيرات العلاجية: الآثار المرغوبة والأخرى غير المرغوب فيها. والأهم من ذلك، أن جميع الأدوية يمكن أن تسبب آثارًا جانبية علاجية غير متوقعة إلى جانب آثارها المفيدة. ترتبط شدة وحدوث هذه الآثار بحسب حجم الجرعة.

التأثير الجانبي والتأثير السام للدواء:

يُعرَّف التأثير الجانبي side effect بأنه التأثير غير المرغوب فيه علاجيًا ولكنه غالبًا لا مفر منه والذي يحدث عند الجرعات العلاجية العادية للدواء. هي ليست آثارًا خطيرة، ويمكن التنبؤ بها من الملف الدوائي للدواء في جرعة معينة.

أما التأثير السام toxic effect فهو تأثير ضار وغير مرغوب فيه ولكن يمكن تجنبه في كثير من الأحيان، حيث غالبًا ما يكون سببه استخدام الدواء بجرعة عادية ولكن لفترة طويلة أو جرعة زائدة من الدواء. من المحتمل أن تكون التأثيرات السامة للأدوية إما مرتبطة بالإجراءات الدوائية الرئيسية مثل النزيف بمضادات التخثر أو لا علاقة لها بالإجراء الدوائي الرئيسي مثل تلف الكبد بسبب جرعة زائدة من الباراسيتامول.

على سبيل المثال، يتم تناول كربونات الكالسيوم لعلاج نقص الكالسيوم أو هشاشة العظام، ويعتبر الإمساك من الآثار الجانبية التي لا يمكن تجنبها هنا. بينما يمكن تجنب التأثيرات السامة عن طريق الاستخدام الدقيق والحكيم للدواء.

بعض الفروقات التي توضح التأثير الجانبي والتأثير السام:

  • الآثار الجانبية ليست ضارة في كثير من الأحيان، بالرغم من أنها غير متوقعة من الناحية العلاجية ولكنها لا تهدد الحياة. على الجانب الأخر، فإن التأثيرات السامة ضارة وغالبًا ما تكون مهددة للحياة.
  • يحدث التأثير الجانبي ضمن الجرعة العلاجية العادية للدواء. أما التأثير السام فيحدث بسبب الجرعة الزائدة أو الجرعة المتكررة من الدواء. المقصود بالجرعة العلاجية هنا هي الكمية المحددة مسبقًا من الدواء والتي ستنتج التأثيرات العلاجية المثلى.
  • عدم ضرورة تقليل جرعة الدواء أو وقفها في حال التأثير الجانبي. عكس ذلك في التأثير السام يكون تقليل أو وقف الدواء ضروري.
  • في كثير من الأحيان لا حاجة لعلاج الآثار الجانبية، باستثناء الحالات الشديدة لتقليل الانزعاج أو المضاعفات. في حالة التأثيرات السامة، يتم علاج التسمم وإعطاء ترياق. على سبيل المثال، يجب إعطاء N-acetylcysteine ​​لعلاج السمية الكبدية الناتجة عن جرعة زائدة من الباراسيتامول.

Ec50, IC50:

هذه المصطلحات وإن كانت متشابهة، إلا أنها ليست متطابقة تمامًا، EC50: هو تركيز دواء يعطي استجابة نصف قصوى. IC50 هو تركيز مثبط حيث يتم تقليل الاستجابة (أو الارتباط) بمقدار النصف. من الطرق الجيدة لتذكر الاختلاف استخدام الاختصار “I” في IC50، والذي يرمز إلى التثبيط inhibition، على عكس “E” في EC50 ، والذي يشير إلى فعال effective.

المؤشر العلاجي، LD50, ED50

المؤشر العلاجي Therapeutic index: هو هامش الأمان الموجود بين جرعة الدواء التي تنتج التأثير المطلوب والجرعة التي تنتج آثارًا جانبية غير مرغوب فيها وربما خطيرة. تعرف هذه العلاقة على أنها نسبة الجرعة التي تنتج سمية إلى الجرعة التي تنتج استجابة مرغوبة سريريًا أو فعالة (TI= LD50/ED50)، حيث LD50 هي الجرعة التي يقتل فيها دواء ما 50٪ من مجموعة اختبار من الحيوانات و ED50 هي الجرعة التي يتم فيها إنتاج التأثير المطلوب في 50٪ من مجموعة الاختبار. بشكل عام، كلما كان هذا الهامش أضيق، زادت احتمالية أن ينتج الدواء تأثيرات غير مرغوب فيها. من الجدير بالذكر أن الدواء الأكثر أمانًا يكون له مؤشر علاجي أعلى. يعد الوارفارين مثالًا للدواء ذي المؤشر العلاجي الضيق، أما البنسلين فإنك يملك مؤشر علاجي كبير.

يحتوي المؤشر العلاجي على العديد من القيود ، لا سيما حقيقة أن الجرعة المميتة 50 لا يمكن قياسها عند البشر. وعند قياسها في الحيوانات، فهي دليل ضعيف لاحتمالية حدوث تأثيرات غير مرغوب فيها على البشر. ومع ذلك، فإن المؤشر العلاجي يؤكد على أهمية هامش الأمان، المتميز عن الفاعلية، في تحديد فائدة الدواء.

التركيز الأدنى الفعال والتركيز الادنى السمي


Minimum Effective Concentration (MEC): الحد الأدنى للتركيز المطلوب لتأثير الدواء، وتسمى في حالة المضادات الحيوية MIC، تعني هذه الأخيرة التركيز الأدنى المثبط للكائنات الحية الدقيقة minimum inhibitory concentration. أما minimum toxic concentration (MTC) فهي التركيز الأدنى الذي يُحدث سمية. ويقابلها مصطلح MBC، وهو التركيز الأدنى القاتل للكائنات الحية الدقيقة minimum bactericidal concentration.


إذا كان الدواء يعطي تأثيرًا علاجيًا بجرعة منخفضة ولا يحدث تأثيرًا سامًا إلا بجرعة عالية، فنحن نملك نافذة علاجية واسعة TW يمكن من خلالها استخدام الدواء بأمان.

تعتبر هذه المفاهيم من الأساسيات لعلم العاقير وعلم الصيدلة، وهي تحتاج سنوات من البحث ومراحل من الاختبارات للوصول إلى النتائج الدقيقة. كل ذلك العمل والجهد يفيد في تحديد أساسيات مهمة كجرعة الدواء وطريقة إعطاؤه وأمانه.

مفاهيم أساسية

المصادر:

جائزة نوبل في الكيمياء 2021، وما علاقتها بالتخليق العضوي والمحفزات؟

جائزة نوبل في الكيمياء 2021، وما علاقتها بالتخليق العضوي والمحفزات؟

جميعنا على تماس مباشر بالجزيئات، وقد تكون هذه الجزيئات مصممًة لعلاج المرضى أو لنقل المعلومات وربما لتسميد المحاصيل. يتم تصنيع الجزيئات هذه بخصائص محددة عن طريق التخليق الكيميائي، أي سلسلة من التفاعلات الكيميائية المتتالية.
كلما زاد تحكمنا بهذه الجزيئات زادت فعاليتها مما أدى إلى استدامة عالمنا وتقدمه.
ولجمع جزيئات معقدة حصل عليها الإنسان في المختبر أو تم تجميعها بيولوجيًا من قبل كائنات حية أخرى فهي خضعت لسلسلة من تفاعل مواد أولية بسيطة مع بعضها وقد تكون هذه الخطوات المتسلسلة من التفاعل قد حصلت على تحفيز.


المحفزات وارتباطها بالكيمياء:


من الطبيعي أن تكون المحفزات أساسيًة في عالم الكيمياء فهي تزيد من سرعة ومعدل التفاعل ولا يتم استهلاكها. بمعنى أنه إذا تم إضافة فضة إلى دورق يحتوي بيروكسيد الهيدروجين H2O2 سينهار بيروكسيد الهيدروجين متحولًا إلى ماء H2O وأوكسجين O2.
لكن الأمر الغريب هو أن الفضة يبقى كما هو ولا يتأثر بالتفاعل على الإطلاق.
أول من أدخل مفهوم التحفيز إلى الوسط العلمي هو العالم السويد بارازيليوس عام 1835.
أصبح استخدام المحفزات في الوسط العلمي والصناعي أمرًا روتينيًا، فالتحفيز مشاركٌ في كثيرٍ من عمليات تحويلٍ كيميائي للمواد الصناعية إلى مواد ذات قيمة كالمستحضرات الصيدلانية والكيماويات الزراعية.
في وقتنا الحاضر تم تطوير عدد كبير من المحفزات العضوية المختلفة. تم تصنيف هذه المحفزات حسب دورها الميكانيكي مع تسليط الضوء على وظيفة المحفزات في إزالة أو منح إلكترونات أو بروتونات من وإلى الركيزة.
وهناك ما يدعى بالتصنيف البديل وهو للتمييز بين التحفيز التساهمي الذي يشكل رابطة تساهمية إلى الركيزة والتحفيز الغير تساهمي الذي يعتمد التحفيز على التفاعلات اللاتساهمية مثل تشكيل رابطة هيدروجينية.

المحفزات العضوية

وقبل قنبلة ديفيد ماكميلان وبينيامين ليست التي فجراها لم يتم تغطية التفاعلات التي تحفزها الجزيئات العضوية غير الكيرالية إلا إذا كانت ضرورية للفهم العام في مجال معين.
قد أضاف ماكميلان وليست نوعًا ثالثًا جديدًا من المحفزات وهي المحفزات العضوية غير المتماثلة.
ظهرت عدة أمثلة استخدم فيها المحفزات العضوية وسجل أول استخدام عام 1912 من قبل العالمين فريدج وفيسك. أظهرا أن إضافة سيانيد الهيدروجين HCN إلى البنزالديهايد لتشكيل السيانوهيدرايد يتم تحفيزه بواسطة القاعدتين الكيرالية الكينين والكينيدين. إن السيانوهيدرايد الذي يتم الحصول عليهمن المحفز الأول هو المتماثل الصوري مقارنًة بالمركب الذي سيتم الحصول عليه عند استخدام المحفز الثاني.


رحلة ماكميلان وليست من عام 2000 إلى عام حصولهما على نوبل


عام 2000 قام بينيامين ليست بملاحظة الألدول المحفز بين جزيئات L-Prolin (تحفيز إينامين).
أظهر ليست أن الحمض الأميني الطبيعي L-Prolin يحفز تفاعل الألدول بين الجزيئات. هو تفاعل رابطة كربون-كربون بين الأسيتون وسلسلة من الألدهيدات العطرية. اقترح ليست أن التفاعل يجري عبر إينامين وسيطة، مما يؤدي إلى رفع المدار الجزيئي الأعلى احتلالا وزيادة المحبة للنواة مقارنة مع إيثر الإينول المقابل، وأن وظيفة حمض الكربوكسيل في المحفز تساعد على استقرار الحالة الانتقالية زيمرمان -تراكسلر الخالية من المعادن من خلال الرابطة الهيدروجينية. وهكذا يرتبط المحفز تساهميا بالركيزة ويتحكم في المسار الكيميائي الفراغي لتفاعل الألدول بين الجزيئات. وقد صقلت الدراسات الحسابية اللاحقة للتفاعل هذه الصورة وتسليط الضوء على دور بروتون الحمض الكربوكسيلي كحفاز حمض داخل جزيئي الذي يوفر استقرار الشحنة لتشكيل أنيون الألكسيد. واقترح الباحثون أيضا أن وظيفة المحفز البرولاين كميكروألدولاز ‘، أي كمحاكاة الإنزيمات، وأن تفاعلات عضوية أخرى قد تكون عرضة لتحفيز مماثل لمادة الإينامين بوساطة البرولين.
وفي وقت لاحق من نفس العام لاحظ ماكميلان تفاعل ديلز ألدر بين الألدهيدات غير المشبعة والسيكلونبتدادين المحفز (تحفيز أيونات إمنيوم). في تسعينات القرن العشرين، قامت مجموعة ليرنر وبارباس الثاني بتوليد الأجسام المضادة التي تحفز تفاعل الألدول داخل الجزيئي. تم توليد الأجسام المضادة المحفزة بحيث تحاكي إنزيمات ألدولاز من الفئة الأولى. تستخدم هذه الإنزيمات والأجسام المضادة المحفزة جزء الأمين من بقايا الليسين في الموقع النشط للبروتين لتشكيل إينامين مع الركيزة، والتي تضاف بعد ذلك إلى الألدهيد لإكمال تفاعل الألدول. على وجه الخصوص، أظهر الجسم المضاد التحفيزي 38C2 نطاقاً ركيزاً واسعاً ونواتج مقدمة في الجسم العالي كما تم تطبيق هذا الجسم المضاد ببراعة في خطوة أساسية في تخليق العديد من البريفيكومينات، وهي الفرمونات للعديد من خنافس اللحاء.

تحفيز أيونات الإمينيوم

في عام 2000، أظهر ماكميلان أن الإميدازوليدينون الكيرالي يمكن أن يحفز تفاعل ديلز-ألدر بين الألدهيدات غير المشبعة ويتكثف، الذي يتم إعداده في ثلاث خطوات من استر الميثيل للحمض الأميني الطبيعي L-phenylalanine، مع الألدهيد غير المشبع لتشكيل أيون الأمينيوم المقابل، حيث يتم خفض طاقة أقل مدار جزيئي غير مشبع (LUMO) مقارنة مع الألدهيد. ويؤدي هذا الانخفاض في الطاقة إلى زيادة التفاعل تجاه الديين، ومعدل تفاعل أعلى من تفاعل ديلز-ألدر الناتج مقارنة بالتفاعل غير المحفز. ويمكن تحقيق تنشيط مماثل لخفض أدنى مدار جزيئي غير مشغول باستخدام أحماض لويس المعدنية، وهي تقنية تمت دراستها بشكل كبير. في الحالة التي قدمها ماكميلان، يتم إرفاق المحفز تساهميًا بالركيزة، مما يوفر إمكانيات جيدة لنقل المعلومات الكيرالية من العضوي المحفز إلى المنتج، وناقش الباحثون نموذجًا لترشيده الاستدلال النمطي الملاحظ. من أجل السماح بالتحفيز الفعال، أيون الألومنيوم للقناة الحلقي يجب أن تكون مرنة حركياً بما فيه الكفاية للسماح بتحللها في ظل ظروف التفاعل وتجديد المحفز. الرؤية الرئيسية في عمل ماكميلان هي مفهوم أن خفض طاقة أدنى مدار جزيئي مشغول من خلال وسيط الأمونيوم المتولد تحفيزيًا يوفر منصة عامة يمكن من خلالها تصميم وتطوير تفاعلات غير متماثلة أخرى.

أهمية الاكتشاف أدت على حصولهما على نوبل

أهم أوجه التقدم في التخليق العضوي هي تلك التي توضح مبادئ جديدة لتحفيز التفاعل والتحكم في مسارات التفاعل؛ تطوير مفهوم التحليل العضوي ومبادئ التصميم الأساسية لتطوير مثل هذا التحفيز هو بوضوح تقدم كبير في هذا المجال. الفرص الجديدة لإجراء التفاعلات الكيميائية، مثل التحلل العضوي، وتوسيع مجموعة الأدوات المتاحة للكيميائيين والسماح لتصميم مسارات جديدة للتفاعل للجزيئات العضوية. وتسفر مثل هذه التحسينات والاكتشافات عن مسارات رد فعل أكثر كفاءة، والتي سيكون لها، نتيجة لذلك، تأثير أقل على البيئة. استخدام الجزيئات العضوية الصغيرة كمحفزات للتفاعلات العضوية لم يسبق له مثيل في الكيمياء العضوية. غير أن العمل الذي قام به لِست وماكميلان أسفر عن نقطة تحول؛ هناك ما هو واضح قبل وبعد. عملهم وضع تصورات لمجال التحلل العضوي، مع التركيز على التحفيز غير المتماثل، وأشار إلى مبادئ لتصميم تفاعلات التحلل العضوي الجديدة على أساس المفاهيم الحديثة مثل خفض LUMO (أدنى مدار جزيئي غير مشغول) وتربية HOMO (أعلى مدار جزيئي مشغول).

ازدهار الوسط العلمي والصناعي ما بعد هذا الاكتشاف

تم وصف عدد كبير من ردود الفعل الجديدة، والمحفزات والتطبيقات في الأدب -وقد أشير إلى هذه الفترة باسم “حمى الذهب العضوية” اليوم، فإن المنطقة راسخة في الكيمياء العضوية وتفرعت إلى العديد من التطبيقات الجديدة والمثيرة. كما تم التعرف على التحلل العضوي الآن على أنه الدعامة الثالثة للتحفيز غير المتماثل، جنبا إلى جنب مع التحلل الحيوي والتحفيز المعدني الانتقالي. منذ أوراق لِست وماكميلان في عام 2000، تبعت تطورات مثيرة في مجال التحليل العضوي، وتم تطوير محفزات وتفاعلات جديدة لجميع فئات المحفزات العضوية (حمض لويس أو القاعدة، حمض برونستد أو القاعدة). ويركز هذا الموجز على أوجه التقدم المتعلقة بتحفيز الإينامين (قاعدة لويس) وإيونات الأمينيوم (حمض لويس)؛ وقد واصل كل من ليست وماكميلان أنشطتهما في الميدان، حيث طوروا عدة تفاعلات عضوية محفزة جديدة باستخدام L-proline وchiral imidazolidinones كمحفزات، على التوالي. إلى جانب تفاعل الألدول داخل الجزيئي.

حفاز يورغنسن -هاياشي:

في عام 2005، هجر يورغنسن وزملاؤه عملية أسولفينيل الألدهيدات باستخدام إثير سيليل دياريل كحفاز، وفي وقت لاحق من نفس العام، أظهرت هاياشي أن هذا النوع من الحفاز مؤهل أيضاً لإضافة البروبانال إلى النتروستيرين؛ كلا التفاعلين يعملان بواسطة آلية الإينامين. وبعد ذلك بوقت قصير تبين أيضاً أن المادة الحفازة لها القدرة على أكسدة الألدهيدات غير المشبعة، مثل سينامالديهايد (cinnamaldehyde)، إلى الأبوكسيد. هذه التفاعلات تسلط الضوء على بعض الجوانب المهمة من هذه الكيمياء، وهي تثبت أن إثير دياريل برولينول السيليل مؤهل لتعزيز التفاعلات التي تنطوي على كل من مكافئ تحفيز الإينامين وتحفيز أيون الأمينيوم، أثبتت إيثرات السيليل أنها محفز قوي لهذه الكيمياء مع نطاق واسع من التطبيقات، وذلك بسبب زيادة إعاقة الستيريك وارتفاع انتقائية الستيريوم مقارنة مع محفزات لبرولين وإيميدازوليدينون.

دمج التحليل العضوي مع تحفيز الأكسدة الضوئية

إن إمكانية تحويل الطاقة الشمسية إلى طاقة كيميائية لها أهمية كبيرة لتطوير مجتمع مستدام. ينبع إلهام هذا البحث من التمثيل الضوئي، حيث تستخدم النباتات الطاقة الشمسية لتحويل المواد الخام البسيطة إلى طاقة كيميائية في شكل كربوهيدرات. إحدى الطرق الممكنة لتقليد هذه الكيمياء هي استخدام محفزات المعادن الانتقالية (محفزات الأكسدة الضوئية) الذي يمكن بعد ذلك تنشيط الجزيئات العضوية المستقرة عن طريق الأكسدة أو الاختزال أحادي الإلكترون. وهذا يوفر وسيطات الغلاف المفتوح التي لا يمكن الوصول إليها بسهولة ويفتح إمكانية تحفيز مسارات تفاعل الإلكترون الثنائي الصعبة بخلاف ذلك باستخدام خطوتين لنقل الإلكترون الواحد بواسطة محلل الصور. وفي عام 2008، قام نيكويتز وماكميلان بدمج هذه الكيمياء مع التحليل العضوي، مما أدى إلى الألكيل الفعال للألدهيدات. دور المحفز الضوئي P في هذا التفاعل هو اختزال هاليد الألكيل إلى جزيء ألكيل وأيون هاليد. ثم يضيف جزيء الألكيل إلى إينامين، مكونًا رابطة كربون-كربون وجزيء ألكيل جديد. ثم يتأكسد هذا النوع بواسطة المحفز الضوئي لينتج أيون إمونيوم، والذي يتحلل إلى المنتج ويعيد الكاتياليست العضوي، واحد مع الكاساليست العضوي والآخر مع محفز الأكسدة الضوئية، مع نقطتي اتصال. أثارت تحقيقات نيكويتز وماكميلان، اهتمامًا كبيرًا في مجتمع الكيمياء، وتم استثمار الكثير من الجهد في تطوير تفاعلات محفزة بالأكسدة الضوئية. “إن قوة هذه الكيمياء هي أنه باستخدام ظروف رد فعل مستدامة، فإنها تسمح بالوصول إلى المواد الوسيطة التي لا يمكن الوصول إليها عن طريق التنشيط الحراري التقليدي. وقد تم تطوير كيمياء جديدة، وتم الآن تطبيق تحفيز الأكسدة الضوئية في معظم مجالات الكيمياء العضوية، في الأوساط الأكاديمية والصناعية على حد سواء.

تطبيقات تخليق الجزيئات العضوية المعقدة

الهدف من التخليق العضوي هو إنتاج الجزيئات العضوية، سواء كانت للمنتجات الدوائية أو الزراعية أو الطبيعية أو غيرها من التطبيقات. وقد وجد التحليل العضوي تطبيق واسع النطاق في هذا المجال. غالباً ما تكون كفاءة التسلسلات الاصطناعية طويلة متعددة الخطوات مشكلة وعادةً ما توفر المركب المطلوب بكميات دقيقة فقط. إحدى الاستراتيجيات لتخفيف هذا العيب المتأصل مستلهمة من التخليق الحيوي للجزيئات العضوية، حيث يتم استخدام سلاسل من إنزيمات تحول المواد الأولية البسيطة إلى جزيئات معقدة في عملية منظمة للغاية. في التخليق العضوي، يتم تقليد ذلك باستخدام تفاعلات متتالية حيث يكون ناتج خطوة التفاعل الأولى هو المادة البادئة للخطوة التالية، وبالتالي تجنب عمليات التنقية غير الضرورية بين كل خطوة من خطوات التفاعل. ومن الأمثلة الأنيقة على هذه الكيمياء التركيب الكامل لفيتامين أ -توكوفيرول (فيتامين هـ)، وهو مضاد أكسدة قوي، في هذا التفاعل التعاقبي، الذي يتكون من تفاعل ألدول متبوعا بتفاعل أوكا -مايكل، يتم تركيب رابطتين جديدتين ومركز مجسم جديد في عملية واحدة، وبالتالي تشكيل جزء بيران من a-tocopherol.

التخليق العضوي وأهميته في الصيدلة

التخليق العضوي له دور هام في البحوث الصيدلانية قبل السريرية، حيث هناك طلب كبير على جزيئات عضوية جديدة ليتم اختبارها في عدة أمرض مختلفة. والهدف من هذا النشاط هو تطوير أدوية جديدة لعلاج الأمراض، وليس من المستغرب أن يتم تطبيق أساليب التحفيز العضوي في هذا المجال. ومن الأمثلة على ذلك علاج فرط ضغط الدم (ارتفاع ضغط الدم). الرينين، وهو بروتيني يفرزه الكليتان، يحلل البروتين الأنجيوتنسين في مجرى الدم إلى الببتيد الأنجيوتنسين I. يؤدي المزيد من التحلل المائي للأنجيوتنسين الأول إلى تشكيل الأنجيوتنسين الثاني، وهو ببتيد نشط في الأوعية تشارك في ارتفاع ضغط الدم. أحد الاحتمالات لعلاج ارتفاع ضغط الدم هو تثبيط الرينين ومنع تكوين أنجيوتنسين. ولقد أثبت الباحثون في شركة نوفارتيز أن هذا أمر ممكن حقا. إن التطورات في التخليق العضوي التي توضح مبادئ جديدة لتحفيز التفاعل والتحكم في مسارات رد الفعل أمر مركزي للتقدم في الانضباط. وقد أسهم الفائزون هذا العام إسهاما رائدا في هذا المجال. من روايتهم النظرية.وقد اجتذب عام 2000 اهتماما كبيرا من أوساط الباحثين ويمثل بداية للبحوث الحديثة في التحليل العضوي، مما أثار تطورا لا يزال مستمرا. مجال البحث واسع لا يشمل فقط تحفيز إينامين وأيونات الأمينيوم، واليوم نضج التحليل العضوي إلى أداة تستخدم بشكل روتيني في التخطيط والتنفيذ التخليقي، سواء في الصناعة والأوساط الأكاديمية.

المصدر

[1] Nobel Prize

فائزان بنوبل الكيمياء 2021، من هما؟ وماذا قدما للبشرية؟

فائزان بنوبل الكيمياء 2021 ، من هما؟ وماذا قدما للبشرية؟

قررت الأكاديمية الملكية السويدية للعلوم منح جائزة نوبل في الكيمياء لعام 2021 مناصفة إلى الألماني بنيامين ليست Benjamin list والاسكوتلاندي ديفيد ماكميلان David MacMillan “لتطوير التحفيز العضوي غير المتماثل.” فماذا قدم الفائزان بنوبل الكيمياء 2021 للبشرية؟

بناء الجزيئات فن صعب. حصل Benjamin List و David MacMillan على جائزة نوبل في الكيمياء 2021 لتطويرهما أداة جديدة دقيقة للبناء الجزيئي وهي التحفيز العضوي. كان لهذا أثر كبير على الأبحاث الصيدلانية، إذ جعل الكيمياء أكثر أمنًا للبيئة.

نبذة عن دور العالمين في جائزة نوبل الكيمياء 2021

تعتمد العديد من مجالات البحث والصناعات على قدرة الكيميائيين على بناء جزيئات قادرة على تكوين مواد مرنة ومتينة، أو تخزين الطاقة في البطاريات أو منع تطور الأمراض أو جزيئات تساهم في صناعة أحذية جري خفيفة الوزن.

يتطلب هذا العمل “محفزات”، والمحفزات هي مواد تتحكم في التفاعلات الكيميائية وتسرعها، دون أن تصبح جزءًا من المنتج النهائي للتفاعل. على سبيل المثال، تقوم المحفزات في السيارات بتحويل المواد السامة في أبخرة العادم إلى جزيئات غير ضارة.

تحتوي أجسامنا أيضًا على آلاف المحفزات على شكل إنزيمات، والتي تُشكّل الجزيئات الضرورية للحياة. بالتالي، فإن المحفزات هي أدوات أساسية للكيميائيين، لكن اعتقد الباحثون منذ فترة طويلة بوجود نوعان فقط من المحفزات المتاحة وهي المعادن والإنزيمات. حصل Benjamin List و David MacMillan على جائزة نوبل في الكيمياء 2021 لقيامهما في عام 2000 م، بشكل مستقل عن بعضهما البعض، بتطوير نوعًا ثالثًا من الحفز وهو “الحفز العضوي غير المتماثل” ويبني على جزيئات عضوية صغيرة.

يرجع التوسع السريع في استخدام المحفزات العضوية بشكل أساسي إلى قدرتها على تنشيط الحفز غير المتماثل. عندما يتم بناء الجزيئات، غالبًا ما يتشكل جزيئين مختلفين، فهي – تمامًا مثل أيدينا – صورة مرآة لبعضهما البعض. غالبًا ما يرغب الكيميائيون في إحدى الصورتين فقط من صورتي المرآة، خاصة عند إنتاج المستحضرات الصيدلانية.

تطور الحفز العضوي بسرعة مذهلة منذ عام 2000 م. ظل بنجامين ليست وديفيد ماكميلان رائدين في هذا المجال، وأظهروا أنه يمكن استخدام المحفزات العضوية لتحريك العديد من التفاعلات الكيميائية. باستخدام هذه التفاعلات، يمكن للباحثين الآن بناء أي شيء بكفاءة أكبر من أدوية جديدة إلى جزيئات قادرة على التقاط الضوء في الخلايا الشمسية. وبهذه الطريقة، حققت المحفزات العضوية فائدة هائلة للبشرية.

إلهام الطبيعة

إذا قارنّا قدرة الطبيعة على بناء إبداعات كيميائية مع قدراتنا الخاصة سنكتشف أننا علقنا لفترة طويلة في العصر الحجري. أنتج التطور عبر ملايين السنين أدوات دقيقة مذهلة، هي الإنزيمات. تلك الإنزيمات قادرة على المساهمة في بناء المركبات الجزيئية التي تعطي الحياة أشكالها وألوانها ووظائفها. عندما بدأ اليميائيون في ربط هذه التُحف الكيميائية، نظروا إليها بإعجاب وذهول! كانت المطارق والأزاميل في صناديق أدواتهم للبناء الجزيئي بدائية وغير دقيقة. لذلك، غالبًا ما انتهت محاولاتهم في نسخ منتجات الطبيعة إلى الكثير من المنتجات الثانوية غير المرغوب فيها.

أدى الاكتشاف الذي حصل على جائزة نوبل في الكيمياء 2021 إلى الارتقاء بالبناء الجزيئي إلى مستوى جديد تمامًا. فهو لم يجعل الكيمياء أكثر أمنًا للبيئة فحسب، بل سهّل أيضًا إنتاج جزيئات غير متماثلة عبر “التحفيز العضوي غير المتماثل”. ذلك المفهوم الذي طوره بنيامين ليست وديفيد ماكميلان بسيط بقدر ما هو رائع. الحقيقة هي أن الكثير من الناس تساءلوا لماذا لم نفكر في الأمر من قبل؟ ليس من السهل الإجابة عن هذا السؤال، ولكن قبل أن نحاول، نحتاج إلى إلقاء نظرة سريعة على التاريخ.

ما هو التحفيز؟ وما هو المحفّز؟

بادئ ذي بدء، دعونا نتعرف على مصطلحي التحفيز والمحفز، ونمهد الطريق لفهم جائزة نوبل في الكيمياء 2021. عندما بدأ الكيميائيون في استكشاف الطرق التي تتفاعل بها المواد الكيميائية المختلفة مع بعضهم البعض، قاموا ببعض الاكتشافات الغريبة! على سبيل المثال، وضع الكيميائيون الفضة في دورق به بيروكسيد الهيدروجين (H2O2)، فإذا ببيروكسيد الهيدروجين ينهار فجأة ويتحول إلى الماء (H2O) والأكسجين (O2). لكن الفضة – التي بدأنا بها العملية – لا يبدو أنها تتأثر بالتفاعل على الإطلاق!

في عام 1835 م، بدأ الكيميائي السويدي الشهير جاكوب برزيليوس في رؤية تلك الأنماط. في التقرير السنوي للأكاديمية الملكية السويدية للعلوم الذي يصف أحدث تقدم في الفيزياء والكيمياء ، نص على اكتشاف “قوة” جديدة يمكنها “توليد نشاط كيميائي”! وسرد التقرير العديد من الأمثلة التي أدى فيها وجود مادة ما إلى بدء تفاعل كيميائي معيّن، موضحًا كيف بدت هذه الظاهرة أكثر شيوعًا مما كان يُعتقد سابقًا. كان يعتقد أن المادة لها قوة محفزة وأطلق على الظاهرة نفسها محفزًا.

المحفزات تسرع التفاعلات الكيميائية في القرن التاسع عشر

شرعت المحفزات في إنتاج البلاستيك والعطور والأطعمة ذات النكهات حيثث مرت كميات كبيرة من المواد عبر ماصات الكيميائيين منذ زمن برزيليوس. لقد اكتشفوا عددًا كبيرًا من المحفزات القادرة على تكسير الجزيئات أو ضمها معًا. بفضل هذه المحفزات، تمكننا كبشر من استخراج آلاف المواد المختلفة التي نستخدمها في حياتنا اليومية، مثل الأدوية والبلاستيك والعطور والنكهات الغذائية.

هل نجحت المعادن كمحفزات؟

تشير التقديرات إلى أن 35 % من إجمالي الناتج المحلي العالمي يتضمن بطريقة ما الحفز الكيميائي. من حيث المبدأ، تنتمي جميع المحفزات المكتشفة قبل عام 2000 إلى إحدى مجموعتين: إما معادن أو إنزيمات.

غالبًا ما تكون المعادن محفزات ممتازة لأنها تتمتع بقدرة خاصة على استيعاب الإلكترونات مؤقتًا أو تزويدها بجزيئات أخرى أثناء عملية كيميائية. يساعد هذا في فك الروابط بين الذرات في الجزيء، لذلك يمكن كسر الروابط القوية، ثم تشكيل روابط جديدة. ومع ذلك، هناك مشكلة واحدة في بعض المحفزات المعدنية وهي أنها حساسة جدًا للأكسجين والماء. لذلك، يحتاج الكيميائيون إلى بيئة خالية من الأكسجين والرطوبة للعمل بالمعادن. ويصعب تحقيق ذلك في الصناعات الكبيرة بالطبع. كما أن العديد من المحفزات المعدنية عبارة عن معادن ثقيلة قد تسبب ضررًا بالبيئة.

ماذا عن المحفزات العضوية؟ هل تنجح؟

على الجانب الآخر، تعمل المحفزات الحيوية بدقة مذهلة. تتكون المحفزات العضوية تلك من البروتينات ويطلق عليها “الإنزيمات”. تحتوي جميع الكائنات الحية على آلاف الإنزيمات المختلفة التي تحرك التفاعلات الكيميائية الضرورية للحياة داخل أجسادها. العديد من الإنزيمات متخصصة في التحفيز غير المتماثل، ويشكلون دائمًا صورة مرآة واحدة من الصورتين الممكنتين للمركّب. كما تعمل تلك المحفزات العضوية جنبًا إلى جنب في تناغم رائع. فعندما ينتهي إنزيم من التفاعل، يتولى إنزيم آخر المهمة. وبهذه الطريقة، يمكن للمحفزات العضوية بناء جزيئات معقدة بدقة مذهلة، مثل الكوليسترول أو الكلوروفيل أو سم الإستركنين، وهو أحد أكثر الجزيئات تعقيدًا التي نعرفها.

نظرًا لأن الإنزيمات عبارة عن محفزات فعّالة، فقد حاول الباحثون في التسعينيات تطوير متغيرات إنزيمية جديدة لدفع التفاعلات الكيميائية التي تحتاجها البشرية. إحدى المجموعات البحثية التي تعمل على هذا كان مقرها في معهد سكريبس Scripps للأبحاث في جنوب كاليفورنيا وكان بقيادة الراحل كارلوس بارباس الثالث. كان بنيامين ليست في منصب ما بعد الدكتوراه في مجموعة بارباس البحثية. ولدت عند بينيامين ليست حينها تلك الفكرة الرائعة التي أدت إلى الاكتشاف الذي حاز به فائزان بنوبل الكيمياء 2021.

فائزان بنوبل الكيمياء 2021

تفكير بنيامين ليست خارج الصندوق!

عمل Benjamin List على الأجسام المضادة التحفيزية. ترتبط تلك الأجسام المضادة بالفيروسات أو البكتيريا الغريبة في أجسامنا. عمل الباحثون في Scripps على إعادة تصميم تلك الأجسام حتى يتمكنون من إحداث تفاعلات كيميائية بدلاً الارتباط بالأجسام الغريبة. أثناء عمل بينيامين مع الأجسام المضادة المحفزة، بدأ في التفكير في كيفية عمل الإنزيمات بالفعل. عادة ما تكون جزيئات ضخمة مبنية من مئات الأحماض الأمينية. بالإضافة إلى هذه الأحماض الأمينية، تحتوي نسبة كبيرة من الإنزيمات أيضًا على معادن تساعد في دفع العمليات الكيميائية. لكن – وهذه هي النقطة – تشارك العديد من الإنزيمات في تفاعلات كيميائية تحفيزية دون مساعدة المعادن! إذ تتم التفاعلات عبر حمض أميني واحد أو عدد قليل من الأحماض الأمينية الفردية في الإنزيمات.

كان سؤال بنيامين العبقري هو هل يجب أن تكون الأحماض الأمينية جزءًا من الإنزيم لتحفيز تفاعل كيميائي ما؟ أو هل يمكن لحمض أميني واحد، أو جزيئات بسيطة أخرى مماثلة، القيام بنفس الوظيفة؟

كان يعلم أن هناك بحثًا من أوائل السبعينيات استخدم حمض أميني يسمى البرولين كمحفز – لكن حدث ذلك قبل أكثر من 25 عامًا من سؤاله. لكن إذا كان البرولين حافزًا فعالًا، فربما استمر شخص ما في العمل عليه؟ اعتقد بنجامين ليست أن السبب وراء عدم استمرار أي شخص في دراسة الظاهرة هو أنها لم تعمل بشكل جيد. دون أي توقعات حقيقية، اختبر بينيامين ما إذا كان البرولين يمكن أن يحفز تفاعل “ألدول-Aldol”، حيث ترتبط ذرات كربون جزيئين مختلفين معًا. لقد كانت محاولة بسيطة، بشكل مثير للدهشة، وقد نجحت على الفور!

رهان بنيامين ليست!

لم يكتشف Benjamin List أن البرولين عامل حفاز فعال فحسب كسابقه، بل أظهر أيضًا أن هذا الحمض الأميني يمكن أن يؤدي إلى تحفيز غير متماثل. من بين صورتي المرآة المحتملتين، كانت تتشكل إحداهما أكثر من الأخرى! وعلى عكس أولئك الذين اختبروا البرولين سابقًا كمحفز، أدرك بنيامين الإمكانات الهائلة التي يمكن أن تمتلكها تجربته. بالمقارنة مع كل من المعادن والإنزيمات، يعتبر البرولين أداة مثالية للكيميائيين. فالبرولين جزيء بسيط للغاية ورخيص وصديق للبيئة. عندما نشر بحثه في فبراير 2000 م، وصف بينيامين التحفيز غير المتماثل مع الجزيئات العضوية كمفهوم جديد لديه العديد من الفرص المستقبلية. ولم يكن وحده في هذا الرأي. ففي مختبر بعيد في شمال كاليفورنيا، كان ديفيد ماكميلان يعمل أيضًا لتحقيق نفس الهدف!

انتباه ديفيد ماكميلان للمحفزات العضوية

قبل عامين، انتقل ديفيد ماكميلان من جامعة هارفارد إلى جامعة كاليفورنيا في بيركلي. عمل ديفيد في جامعة هارفارد على تحسين التحفيز غير المتماثل باستخدام المعادن. كان مجالًا جاذبًا للكثير من الباحثين، لكن ديفيد ماكميلان لاحظ كيف أن المحفزات التي تم تطويرها نادرًا ما تستخدم في الصناعة. بدأ ديفيد يفكر في السبب، وافترض أن المعادن الحساسة كانت بكل بساطة صعبة للغاية ومكلفة للاستخدام.

كما بينيامين، عرف ديفيد أن تحقيق الظروف الخالية من الأكسجين والرطوبة التي تتطلبها بعض المحفزات المعدنية أمر بسيط في المختبر، ومعقد في الصناعة. فاستنتج أن تلك الأدوات الكيميائية التي يطورها تحتاج إلى إعادة تفكير كي تكون مفيدة صناعيًا. لذلك، عندما انتقل إلى بيركلي، ترك المعادن خلف ظهره. وبدأ في التفكير في تطوير شكل أبسط من المحفزات بدلاً من المعادن. بدأ David MacMillan في تصميم جزيئات عضوية بسيطة – تمامًا مثل المعادن – قادرة على توفير الإلكترونات أو استيعابها مؤقتًا. والجزيئات العضوية هي الجزيئات التي تبني كل الكائنات الحية. ولدى تلك الجزيئات هيكل ثابت من ذرات الكربون. ترتبط المجموعات الكيميائية النشطة بهيكل الكربون، وغالبًا ما يحتوي على الأكسجين أو النيتروجين أو الكبريت أو الفوسفور.

أيون الإيمينيوم

تتكون الجزيئات العضوية من عناصر بسيطة ومشتركة، ولكن يعتمد اختلافها على كيفية تجميعها معًا. يترتب على ذلك الاختلاف الكثير من الخصائص المعقدة. وفق معرففة ديفيد ماكميلان بالكيمياء، أدرك أنه لكي يحفز الجزيء العضوي التفاعل الذي يرغب فيه، يجب أن يصبح قادرًا على تكوين “أيون إيمينيوم-iminium ion”. يحتوي أيون الإيمينيوم على ذرة نيتروجين، وذرة النيتروجين محبة للإلكترونات. اختار ديفيد العديد من الجزيئات العضوية ذات الخصائص الصحيحة، ثم اختبر قدرتها على تحفيز تفاعل “Diels-Alder”. يستخدم الكيميائيون تفاعل “Diels-Alder” لبناء حلقات من ذرات الكربون.

وكما كان يأمل ديفيد ويعتقد، عمل التفاعل بشكل رائع. عملت بعض الجزيئات العضوية بشكل ممتاز أيضًا في التحفيز غير المتماثل. فمن بين صورتين محتملتين، ظهرت إحداهما بأكثر من 90 % من المنتج. وبذلك تمكّن ديفيد أيضًا من تحقيق التحفيز العضوي غير المتماثل! أدى اكتشاف ديفيد مع اكتشاف بينيامين إلى أن يصبحا فائزان بنوبل الكيمياء 2021.

صياغة ديفيد ماكميلان لمصطلح “التحفيز العضوي-organocatalysis”

عندما استعد ديفيد ماكميلان لنشر نتائجه، أدرك أن مفهوم الحفز الكيميائي الذي اكتشفه يحتاج إلى اسم. نجح الباحثون سابقًا في تحفيز التفاعلات الكيميائية باستخدام جزيئات عضوية صغيرة، لكن تلك كانت أمثلة معزولة ولم يدرك أحد أن الطريقة يمكن تعميمها! أراد David MacMillan العثور على مصطلح لوصف الطريقة حتى يفهم الباحثون الآخرون أن هناك المزيد من المحفزات العضوية لاكتشافها. وقع اختياره على “التحفيز العضوي-organocatalysis”.

في يناير 2000 م، وقبل أن ينشر بنيامين ليست اكتشافه مباشرة، قدم ديفيد ماكميلان ورقته للنشر في مجلة علمية. تنص المقدمة على ما يلي: “هيا بنا نقدم استراتيجية جديدة للتحفيز العضوي نتوقع لها أن تكون قادرة على القيام بمجموعة من التحولات غير المتماثلة”: “Herein, we introduce a new strategy for organocatalysis that we expect will be amenable to a range of asymmetric transformations”.

ازدهار استخدام التحفيز العضوي

بشكل مستقل عن بعضهما البعض، اكتشف بنيامين ليست وديفيد ماكميلان مفهومًا جديدًا تمامًا للحفز العضوي. ومنذ عام 2000 م، يمكن تشبيه التطورات التي حدثت في هذا المجال تقريبًا كحمى استكشاف الذهب، ولكن احتفظ بينيامين وديفيد بمكانة رائدة. لقد صمما العديد من المحفزات العضوية الرخيصة والمستقرة والتي يمكن استخدامها لتحفيز مجموعة كبيرة من التفاعلات الكيميائية.

لا تتكون المحفزات العضوية غالبًا من جزيئات بسيطة فحسب، بل يمكنها في بعض الحالات العمل على حزام ناقل تمامًا مثل إنزيمات الطبيعة. في السابق، كان من الضروري في عمليات الإنتاج الكيميائي عزل كل منتج وسيط وتنقيته، وإلا فإن حجم المنتجات الثانوية سيكون كبيرًا جدًا. أدى هذا إلى فقدان بعض المادة في كل خطوة من البناء الكيميائي. تعتبر المحفزات العضوية أكثر مرونة، حيث يمكن في كثير من الأحيان إجراء عدة خطوات في عملية الإنتاج في تسلسل غير منقطع. يسمى هذا بالتفاعل التعاقبي، واستطاع ذلك التفاعل أن يقلل بشكل كبير من النفايات في التصنيع الكيميائي.

تصنيع الإستركنين بكفاءة أكبر بـ 7000 مرة!

أحد الأمثلة على الطريقة التي أدى بها التحفيز العضوي إلى مكونات جزيئية أكثر كفاءة هو أطروحة توليف جزيء الإستركنين الطبيعي والمعقد. قد يتعرف الكثير من محبي الروايات على الإستركنين من كتب الروائية أجاثا كريستي، ملكة ألغاز القتل. ومع ذلك، فبالنسبة للكيميائيين، يشبه الإستركنين مكعب الروبيك، فهو تحدٍ ترغب في حله في أقل عدد ممكن من الخطوات. عندما تم تصنيع الإستركنين لأول مرة عام 1952 م، تطلب الأمر 29 تفاعلًا كيميائيًا مختلفًا و شكّلت 0.0009 % فقط من المادة الأولية الإستركنين، وتم إهدار الباقي. في عام 2011 م، تمكن الباحثون من استخدام التحفيز العضوي ورد الفعل التعاقبي لبناء الإستركنين في 12 خطوة فقط. وكانت عملية الإنتاج أكثر كفاءة بمقدار 7000 مرة!

أهمية الحفز العضوي في إنتاج المستحضرات الدوائية الصيدلانية!

كان للحفز العضوي أثر كبير على البحوث الصيدلانية، والتي تتطلب غالبًا تحفيزًا غير متماثل. وإلى أن يتمكن الكيميائيون من إجراء تحفيز غير متماثل، احتوت العديد من المستحضرات الصيدلانية على صور معكوسة غير مرغوبة للجزيء. صورة الجزيء هي معكوسه في المرآة، يكون أحدهما نشطًا، بينما يمكن أن يكون للآخر تأثيرات غير مرغوب فيها. ومن الأمثلة الكارثية على ذلك فضيحة الثاليدومايد في الستينيات، حيث تسببت صورة دواء الثاليدومايد في حدوث تشوهات خطيرة في آلاف الأجنة البشرية. قيل عن الحدث أنه “أكبر كارثة طبية صنعها الإنسان على الإطلاق” ونتج عنها 10 آلاف طفل مشوه بمختلف الدرجات في 46 دولة ما بين 1950 و 1960م. [1]

باستخدام التحفيز العضوي، تمكن الباحثون من إنتاج كميات كبيرة من الجزيئات غير المتماثلة المختلفة ببساطة. واستطاع الباحثون تصنيع مواد علاجية محتملة بكميات لم يكن عزلها سهلًا إلا بكميات صغيرة من النباتات النادرة أو الكائنات الحية في أعماق البحار. استخدمت شركات الأدوية التقنية بالطبع لتسهيل إنتاج المستحضرات الدوائية المصنّعة. ومن الأمثلة على ذلك إنتاج الباروكستين الذي يستخدم لعلاج القلق والاكتئاب، والأدوية المضادة للفيروسات مثل الأوسيلتاميفير الذي يستخدم لعلاج التهابات الجهاز التنفسي.

الأفكار البسيطة هي الأصعب دائما!

من الممكن سرد آلاف الأمثلة عن كيفية استخدام التحفيز العضوي – ولكن لماذا لم يبتكر أحد هذا المفهوم البسيط والآمن والرخيص للحفز غير المتماثل في وقت سابق؟ هذا السؤال له العديد من الإجابات. الأول هو أن الأفكار البسيطة غالبًا ما تكون الأكثر صعوبة في تخيلها. إن وجهة نظرنا تحجبها الأفكار المسبقة القوية حول الكيفية التي يجب أن يعمل بها العالم، مثل فكرة أن المعادن أو الإنزيمات فقط هي التي يمكن أن تحفز التفاعلات الكيميائية. نجح بنيامين ليست وديفيد ماكميلان في أن يصبحا فائزان بنوبل الكيمياء 2021 من خلال رؤية ماض هذه الأفكار، ثم تطلعا بعيدًا لإيجاد حل مبتكر لمشكلة عانى منها الكيميائيين لعقود من الزمن. وبالتالي، استحقت المحفزات العضوية جائزة نوبل الكيمياء 2021 لما تجلبه – في الوقت الحالي – من فائدة هائلة للبشرية.

المصادر:

medicalnewstoday [1]
[2] Nobel Prize website

كيف تطور مفهومنا عن الذرة؟

فكرة الذرة فكرة قديمة قدم الفكر البشري، فلطالما تساءل الإنسان عن أصغر شيء ممكن، وعن مما تتكون المادة، واليوم سنقص عليكم قصة تطور المفهوم البشري عن الذرة، وكيف توصلنا إلى النموذج الحالي.

«ديموقريطوس-Democritus»

كان الفيلسوف اليوناني ديموقريطوس من أوائل الفلاسفة الذين قاموا بتقديم نموذج للذرة، حيث افترض ديموقريطوس أنك تستطيع تقسيم المادة إلى أجزاء صغيرة وتستمر في هذه العملية إلى أن تصل إلى جزء صغير جدا من المادة لا يمكن تقسيمه إلى أجزاء أصغر، وكانت هذه هي الذرة عند ديموقريطوس.

«أرسطو-Aristotle»

رفض أرسطو فكرة الذرة، ورأى أن كل المواد في الكون تتكون من عناصر الطبيعة الأربعة، وهي الهواء والماء والأرض والنار، إلا أن هذه الفكرة الغير علمية تسببت في تعطيل حركة البحث العلمي لما يزيد عن 1000 عام.

«روبرت بويل-Robert Boyle»

كان بويل هو أول من افترض فكرة العناصر، حيث قال أن هناك عناصر محددة في الطبيعة ولكل عنصر منها صفاته المميزة، ووضع تعريفًا للعنصر الكيميائى حيث قال أن المادة التي يمكن تقسيمها إلى مادتين أو أكثر لا تعتبر عنصرًا.

«جون دالتون-John Dalton»

أكمل دالتون على أفكار من سبقوه وصاغ نظريته عن الذرة، ونلخص لكم نظريته في الخمس نقاط التالية:

• كل المواد تتكون من جزيئات صغيرة محددة تُدعى الذرات.
• الذرة غير قابلة للرؤية أو التدمير والتفكيك.
• كل الذرات لنفس العنصر تتشارك صفات متطابقة، بما في ذلك الوزن.
• الذرات للعناصر المختلفة لها كُتل مختلفة وصفات مختلفة.
• تتكون المركبات من اتحاد ذرات العناصر المختلفة بنسب ثابتة بأرقام صحيحة.

«جوزيف جون طومسون-Joseph John Thompson»

السير جوزيف جون طومسون، الحاصل على جائزة نوبل في الفيزياء، وهو مكتشف الإلكترونات، ولكن كيف اكتشفها؟

اكتشف طومسون الإلكترونات عن طريق «تجربة أشعة الكاثود-Cathode rays experiment»، حيث قام بتفريغ أنبوب زجاجي من الهواء، ووضع قطبين كهربائيين على طرفي الأنبوب، ثم قام بشحن أحد القطبين ولاحظ انطلاق أشعة متوهجة من الكاثود (القطب سالب الشحنة) باتجاه القطب الآخر.

ولاختبار خصائص أشعة الكاثود تلك، قام طومسون بوضع صفيحتين حول الكاثود، واحدة ذات شحنة موجبة والأخرى سالبة، فانطلقت أشعة الكاثود باتجاه الصفيحة ذات الشحنة الموجبة.

فقام بوضع استنتاجات هي:

• أشعة الكاثود تتكون من جزيئات ذات شحنة سالبة.
• يجب أن تتواجد تلك الجزيئات كجزء من الذرة حيث أن كتلة الجزيء الواحد منها تساوي 1/2000 من كتلة ذرة الهيدروجين (أصغر الذرات).
• يمكن إيجاد هذه الجزيئات ما دون الذرية في أي ذرة من ذرات العناصر المختلفة.

وعُرفت هذه الجسيمات فيما بعد باسم الإلكترونات.

«إرنست رذرفورد-Ernest Rutherford»

قام رذرفورد بتجربة مدهشة نقلت مفهومنا عن الذرة نقلة كبيرة، حيث قام بإحضار مصدر لأشعة ألفا (أشعة موجبة الشحنة)، ووضعه أمام طبقة من الذهب، ثم قام بإطلاق أشعة ألفا باتجاه الذهب، فلاحظ ثلاث ملاحظات:

• جزء من أشعة ألفا انطلق في خط مستقيم وعبر حاجز الذهب بدون انحراف
• جزء آخر انعكس وعاد إلى الخلف.
• جزء صغير من الأشعة عبر إلى الاتجاه الآخر ولكن مع انحراف في مساره.

وكان تفسير الجزء الذي عبر بدون انحراف هو أن معظم الذرة عبارة عن فراغ، أما الجزء المنعكس فكان نتيجة لاصطدام أشعة ألفا الموجبة بأجسام موجبة داخل الذرة، وأما تفسير انحراف الجزء الضئيل من أشعة ألفا هو التنافر بين الأشعة وبين تلك الجسيمات الموجبة.

وهذه الجسيمات الموجبة عرفت فيما بعد باسم البروتونات.

«دي برولي-De Broglie»

قال دي برولي أن الجزيئات الصغيرة مثل الإلكترون يمكن معاملتها على أنها جزيء وموجة في آن واحد، حيث تمتلك خواص الاثنين، وهو ما يعرف ب«الطبيعة المزدوجة-Dual nature».

«ويرنر هايزنبيرج-Werner Heisenberg»

إحدى أسس ميكانيكا الكم هو مبدأ الريبة لهايزنبيرج، حيث قال هايزنبيرج بمحدودية المعلومات الممكن الحصول عليها حول أي نظام كمّي، فيستحيل معرفة موقع الإلكترون وسرعته في نفس الوقت، إما هذا أو ذاك، ولكن لا يمكن معرفة الاثنين معًا.

النموذج الحديث

قال «نيلز بور-Niels Bohr» بوجود 7 مستويات طاقة يمكن للإلكترونات التواجد فيها حسب طاقتها، وتأخذ في ترتيبها الحروف (K,L,M,N,O,P,Q)، وأن الإلكترون يمكنه أن ينتقل من مستوى إلى آخر عن طريق اكتسابه كمية من الطاقة تُدعى «الكم-quantum»، وهو شيء صحيح، لكنه افترض عدم إمكانية وجود الإلكترون بين هذه المستويات، إلا أن هذا الافتراض تمت تخطئته باكتشاف المستويات الفرعية (s,p,d,f)، وهذه المستويات الفرعية تحوي عددًا من «المداريات-orbitals» تختلف في أعدادها حسب طاقة كل مستوى فرعي، وهو ما دفع الفيزيائيين إلى القول بوجود ما يسمى ب«سحابة الإلكترونات-Electron cloud»، وهي عبارة عن عدد من المواقع التي تزداد فيها احتمالية تواجد الإلكترون حول الذرة.

في الختام

تطور التصور البشري عن الذرة على مدار فترة تزيد عن 2500 سنة، وكل خطوة يخطوها الإنسان في سبيل المعرفة تزيد من معرفته وتطورها، فنقف على أكتاف معرفة الماضي لنرى أبعد مما رأى من سبقونا، وتأتي الأجيال الجديدة لتقف على أكتاف الجيل الحالي، وهكذا تتطور المعرفة البشرية.

المصادر

britannica
britannica
britannica
britannica
britannica
britannica
britannica
britannica

Exit mobile version