لماذا تمطر الألماس على نبتون؟

بعيدًا على أطراف المجموعة الشمسية، حيث تتضاءل الحرارة القادمة من الشمس، يقبع كوكب نبتون بلونه الأزرق الداكن في غموض، من المثير أن تعرف أن المعلومات التي نمتلكها عن هذا الكوكب محدودة للغاية، فلم يبلغ كوكب نبتون من مركباتنا سوى «فوياجر 2-Voyager 2»، والتي مرت بجواره في طريقها إلى خارج المجموعة الشمسية، لكننا لم نرسل بعثة مخصصة لدراسته، إلا أننا نمتلك الحواسيب المتطورة التي بمقدورها محاكاة ظروف هذا الكوكب لنخرج بالتنبؤات عما قد يكون بداخله، وبفضل ذلك بِتنا نعلم أن الأمطار على كوكب نبتون من الألماس!

كيف يتكون الألماس؟

تكوّن الألماس على كوكبنا على مدار 3 بليون سنة، ويرجع ذلك إلى الضغط الشديد والحرارة المرتفعة تحت سطح الأرض بما يزيد عن 150 كيلومتر، حيث تبلغ درجة الحرارة على هذا العمق ما بين 900 إلى 1300 درجة مئوية، ويبلغ الضغط ما بين 45 إلى 60 كيلوبار (أي ما يعادل 50,000 ضعف الضغط الجوي على سطح الأرض)، وهذه الظروف تتسبب بحدوث عملية «التبلور-Crystallization» لجزيئات الكربون، مما يؤدي إلى تحولها للألماس، والذي يخرج بدوره مع الثورانات البركانية إلى سطح الأرض.

الظروف على كوكب نبتون

يُعد كوكب نبتون أحد «العمالقة الجليدية-Ice giants»، حيث يستخدم مصطلح “الجليد” في علم الفلك للإشارة إلى المركّبات التي تحتوي على الهيدروجين، وهو ما ينطبق على على نبتون، حيث أن الطبقة الخارجية من غلافه الجوي مكونة من الهيدروجين (H)، والهيليوم (He)، وهي بسُمك 3,000 كيلومتر، بينما تتكون الطبقة الوسطى والتي تُسمى «الطبقة الجليدية-Icy layer» من الماء (H2O)، والأمونيا (NH3)، والميثان (CH4)، وهي بسُمك 17,500 كيلومتر.

كما أنه ذو ضغط جوي شديد، وهذا بالطبع نتيجة لسُمك غلافه الجوي، وله أيضًا حرارة داخلية مرتفعة.

تفسير محتمل

تقدًم «مارفن روس-Marven Ross» عام 1981 بورقة بحثية في مجلة Nature لتفسير ظاهرة الأمطار الألماسية على كوكب نبتون، حيث افترض أن الحرارة الشديدة تؤدي إلى فصل المركبات الهيدروكربونية (التي تحتوي على الكربون والهيدروجين مثل الميثان) في الطبقة الجليدية الوسطى، لتعطي جزيئات الكربون وجزيئات الهيدروجين منفصلة، ثم تؤدي الحرارة المرتفعة بمساعدة الضغط الجوي الشديد إلى تحول الكربون إلى الألماس، وبما أن الألماس أعلى كثافة من غازات الطبقة الوسطى، فإنه يتساقط على هيأة الأمطار باتجاه مركز الكوكب، وهذا قد يفسّر وجود طبقة كربونية حول نواة الكوكب، إلا أن درجة الحرارة الشديدة تؤدي إلى انصهار الألماس ليتحول إلى حالته السائلة، مما يعني وجود بحار من الألماس السائل!

اختبار الفرضية

قام الباحث الفيزيائي «دومينيك كراوس-Dominik Kraus» في ألمانيا بعمل تجربة مع فريقه، حيث استخدموا فيها جهاز LCLS والذي هو اختصار Linac Coherent Light source، أي “مصدر الضوء المتماسك” باللغة العربية، حيث أن محاكاة الظروف الداخلية لكوكب نبتون صعبة هنا على الأرض، وهنا يأتي دور ال LCLS، كما استخدم الباحثون «الهيدروكربون بوليستيرين-Hydrocarbon polystyrene» بدلًا من الميثان.

يقوم ال LCLS بإرسال نبضات ضوئية باتجاه البوليستيرين، مما يرفع حرارته إلى 5,000 كيلفين (حوالي 4,727 درجة مئوية)، كما يزيد من ضغطه ليصل إلى 1.5 مليون بار، وقد نجحت التجربة بتحويل البوليستيرين إلى الألماس.

إنه لشيء مذهل بحق ما يستطيع الإنسان أن يصل إليه عن طريق العلم، فها نحن ذا نحاكي ظروف كوكب آخر على كوكبنا، ويضيف كراوس قائلًا: “هذه التقنية ستساعدنا على قياس العمليات المثيرة التي كان يصعب علينا إعادة محاكاتها”.

المصادر

americanscientist

sciencealert

nature

التاريخ الكبير: كيف بدأت الحياة على كوكبنا؟

إن أحد أكثر الأسئلة التي تظهر مدى جهلنا بالكون هو كيف بدأت الحياة على كوكبنا؟

كيف لكل هذا التعقيد أن ينشأ؟ العشرات من الآلاف من العمليات الكيميائية الحيوية، التي تحدث بداخلك بينما تقرأ هذا المقال. لكن العلم لديه بعض الآراء والفرضيات بهذا الشأن.

التشابه بين الكائنات الحية وعلاقته بكيفية بداية الحياة

إذا ما تأملت أشكال الحياة من حولك، فستجد تشابهات كثيرة، لنأخذ على سبيل المثال آلية عمل الفيروسات، لا تستطيع الفيروسات التكاثر ذاتيًا، لذا تتكاثر الفيروسات عن طريق زرع مادتها الوراثية بداخل خلية حية، مما يحول تلك الخلية لمصنع ينتج آلاف الفيروسات من نفس النوع، إنه لغريب حقًا كيف تحولت الخلية من كائن قائم بذاته، إلى مصنع لكائن آخر، وكل هذا حدث بمجرد تغيير المادة الوراثية للخلية، فقد قام الRNA الخاص بالفيروس بتغيير وظيفة الخلية كليًا.ولكن ما علاقة هذا بنشأة الحياة؟

هذا يخبرنا أن للحياة أصل مشترك واحد، وأن الحياة نشأت من كائن أولي واحد.على سبيل المثال، نحن تستطيع أن نأكل الموز، فكر بهذا، لماذا نستطيع هضم الموز؟ لأنه وببساطة، حجر الأساس الذي يكون الموز، هو نفسه حجر الأساس الذي يكوننا، بل والذي يكون كل الكائنات الحية.جرب مثلا أن تأكل صخرة، لن تستطيع، لأنه لا يوجد قاسم حيوي مشترك بينك وبين الصخرة، لذا فبما أن بعض الحيوانات تتغذى على النباتات، وبعض الحيوانات تتغذى على آكلات النباتات، فكلهم لديهم أصل واحد.

البحث عن أصل الحياة

ولكن هل يمكننا تتبع هذا السلف المشترك؟ الإجابة هي نعم وبكل تأكيد، فالسجل الأحفوري للنباتات، يخبرنا بوجود حفريات لنباتات بعمر 3 بليون سنة، ولكن هذا لا يمكن أن يكون هو أصل الحياة، إذ أن به الكثير من التعقيد الذي لا يمكن أن ينشأ من كيمياء بسيطة، لذا فأصل الحياة أبسط من هذا.

أين نشأت الحياة؟

هناك العديد من الفرضيات التي تدعي بأن أصل الحياة من خارج الأرض، وأن السماء أمطرت علينا نيازكها محملة بأولى الكائنات الحية، ولكن هذا لا يجيب عن السؤال، هو فقط يلقي بالمشكلة في مكان آخر، لذا فسنركز على ادعاء نشأتها على الأرض.

كيف بدأت الحياة

لنحول المواد الكيميائية الميتة إلى كائنات حية، نحتاج إلى بعض المركبات الكيميائية المعقدة، كالأحماض الأمينية على سبيل المثال، كما نحتاج أيضًا إلى طاقة كبيرة، لتحول هذه المركبات الكيميائية المعقدة، إلى خلية حية غاية في التعقيد، ولحسن الحظ، كل هذا كان موجودًا قبل 3 بليون سنة، فقد كانت البراكين على كوكبنا أكثر نشاطًا، وذلك بسبب زيادة الحرارة، لذا فيمكننا أن نفترض أن الحياة نشأت حول أحد الفوهات البركانية، الموجودة في أعماق المحيطات، حيث توجد الكثير من الحرارة لتحويل الكيمياء الميتة إلى كائن حي، ولكن كما نرى من حولنا، يمكننا رؤية الكائنات الحية الدقيقة في صراع دائم مع بعضها البعض، من أجل البقاء، بل أن بعضها يتغذى على البعض الآخر، لذا فيمكننا القول بوجود العديد من الكائنات الأولية الدقيقة، التي تصارعت في أعماق المحيطات من أجل البقاء، إلى أن نجح نوع واحد بالاستمرار، مما أدى إلى وجودك الآن تقرأ هذا المقال.

الخلاصة

لا يمكننا الجزم بشأن أصل الحياة، فليس بمقدورنا التأكد من هذا بآليات العلم التجريبي، ولكن يمكننا الخروج ببعض الافتراضات والسيناريوهات وفقًا لما نراه من حولنا، ومن يدري؟ أليس من الممكن أن يكون من يكتشف أصل الحياة هو أحد قُرّاء هذا المقال؟

من كورس ل Coursera مقدم من «جامعة أمستردام-Amsterdam

coursera

لقراءة سلسلة التاريخ الكبير ج6 من هنا

مخاوف أخلاقية متصاعدة تجاه جائزة نوبل في الكيمياء 2020 وتقنية كريسبر

لم يكن الجدل حول التعديل الجيني بالجديد، ولكنه عاد للواجهة بعد تسليط نوبل الكيمياء عام 2020 الضوء على تقنية كريسبر للتعديل الجيني واكتشاف قدرتها على جعل هذا التعديل أكثر دقة وسهولة مقارنة بالتقنيات القديمة. مخاوف أخلاقية متصاعدة تجاه جائزة نوبل في الكيمياء 2020 وتقنية كريسبر .

يعتقد علماء الأخلاقيات الحيوية والباحثون عمومًا أنه لا ينبغي محاولة تعديل الجينوم البشري للأغراض الإنجابية حتى اليوم، ولكن يجب أن تستمر الدراسات التي من شأنها جعل العلاج الجيني آمنًا وفعالًا. [1،2]

يتفق معظم المهتمون بالتعديل الجيني على أهمية مواصلة المداولات العامة والنقاش للسماح للجمهور بتقرير ما إذا كان تعديل الجراثيم مسموحًا أم لا.

اعتبارًا من عام 2014، حظرت حوالي 40 دولة أبحاث تعديل جينات الخلايا الجنسية، منها 15 دولة في أوروبا الغربية بسبب المخاوف الأخلاقية والمتعلقة بالسلامة. [3]

هناك أيضًا جهد دولي بقيادة الولايات المتحدة والمملكة المتحدة والصين للتنسيق وتنظيم تطبيق تقنيات التعديل الجيني. بدأت تلك الجهود رسميًا في ديسمبر 2015 مع القمة الدولية لتعديل الجينات البشرية في واشنطن.

مخاوف السلامة

نظرًا لاحتمال حدوث تأثيرات جانبية لعمليات تعديل جيني في المكان الخطأ أو تعديل بعض الخلايا دون أخرى، فإن السلامة هي الشغل الشاغل للباحثين حاليًا.

يتفق الباحثون وعلماء الأخلاق المتخصصون ممن كتبوا وتحدثوا عن تعديل الجينوم، على أنه لا ينبغي استخدام التعديل الجيني لأغراض الإنجاب السريري حتى تثبت سلامة وأمان تعديل جينوم الخلايا الجنسية.

يُرجّح البعض فوائد التعديل الجيني على مخاطره بهدف للدفع تجاه رفع الحظر المفروض عليه، إلا أن البعض الآخر يعتقد بأنه لا يمكن تبرير المخاطر بالفائدة المحتملة.

يشكك بعض الباحثين بنبوءات التعديل الجيني للأجنة البشرية أو اعتبارها ذات فائدة أكبر من التقنيات الحالية، مثل التشخيص الجيني قبل الزرع (PGD) والتخصيب في المختبر (IVF). ومع ذلك، يقر العلماء وأخصائيي الأخلاقيات الحيوية أنه في بعض الحالات، يمكن أن يعالج تعديل الخلايا الجنسية الاحتياجات التي لا يلبيها التشخيص الوراثي قبل الزرع. [4]

مقترحات التعديل الجيني الحالية تشمل:

1. حالات تماثل كلا الأبوين المحتملين بالنسبة لمسبب للمرض (أي حمل كلاهما نسختان من جينات الإصابة، وهو ما يشير إلى إصابة جميع أطفالهم بالمرض).

2. حالات الاضطرابات متعددة الجينات التي تتأثر بأكثر من جين واحد.

3. العائلات التي تعترض على بعض عناصر عملية التشخيص الوراثي قبل الزرع. [5،6]

يشعر بعض الباحثين وأخصائيي الأخلاقيات الحيوية بالقلق من أن أي تعديل للجينوم – حتى للاستخدامات العلاجية – سيضعنا على منحدر زلق قد يقود بنا مباشرة لاستخدامه لأغراض غير علاجية وإجراء تحسينات على البشر، وهو ما يعتبره الكثيرون مثيرًا للجدل.

يجادل آخرون بوجوب السماح بتعديل الجينوم المُثبت آمانه وفعاليته لعلاج الأمراض الوراثية باعتباره واجب أخلاقي تجاه أولئك المرضى. 6 ويقترحون إدارة المخاوف بشأن التحسين والتلاعب من خلال السياسة والقوانين والتنظيم.

يشعر المعلقون على هذه القضية بالقلق أيضًا إزاء سوء استخدام تعديل الجينوم للأغراض الإنجابية وتباين القدرات الرقابية بين داخل الولايات المتحدة وخارجها، مما قد يؤدي إلى استخدامات يعتبرها البعض مرفوضة.

تستشهد هذه الحجج بالبيئات ذاتية التنظيم إلى حد كبير في العيادات الإنجابية التي تقدم التشخيص الوراثي قبل الزرع والتلقيح الصناعي، والاختلافات القائمة في اللوائح بين مختلف البلدان.

موافقة مسبقة

يشعر البعض بالقلق من استحالة الحصول على موافقة حقيقية واعية لعلاج الخلايا الجنسية لأن المرضى المتأثرين بالتعديلات هم الجنين والأجيال القادمة. ويواجه هذا الطرح بحجة مضادة تقول بأن الآباء يتخذون بالفعل العديد من القرارات التي تؤثر على أطفالهم في المستقبل، بما في ذلك القرارات المُعقّدة مثل التشخيص الوراثي قبل الزرع مع التلقيح الاصطناعي.

عبّر الباحثون وخبراء الأخلاقيات الحيوية عن قلقهم أيضًا بشأن إمكانية الحصول على موافقة واعية حقًا من الآباء المحتملين طالما أن مخاطر علاج الخلايا الجنسية غير معروفة.

العدل والإنصاف

كما هو الحال مع العديد من التقنيات الجديدة، يتزايد القلق من إتاحة تقنيات التعديل الجيني للأثرياء فقط بارتفاع أسعارها مما سيزيد التفاوتات الحالية وسيعيق الوصول إلى الرعاية الصحية المناسبة والتدخلات الأخرى.

يشعر البعض بالقلق من التفاوت المجتمعي الذي قد ينتج عن تعديل الخلايا الجنسية بجودة هندسية متباينة، مما قد يخلق معدّلين مميزين ومعدلين عاديين ومعدلين ضعفاء وهكذا.

أبحاث تعديل الجينوم الأجنة

كثير ممن لديهم اعتراضات أخلاقية ودينية يقفو في مواجهة استخدام الأجنة البشرية لإجراء المزيد من الأبحاث. مما جعل استخدام الأموال الفيدرالية في أي بحث ينتج الأجنة أو يدمرها أمر غير ممكن. بالإضافة إلى عدم قدرة المعاهد الوطنية للصحة على تمويل أي استخدام لتحرير وتعديل الجينات في الأجنة البشرية. وفقًا للوائح المعاهد الوطنية للصحة في الولايات المتحدة.

بالرغم من عدم قدرة المعاهد الوطنية للصحة على تمويل تحرير أو تعديل الجينات في الأجنة البشرية حاليًا، تعتقد العديد من مجموعات الأخلاقيات الحيوية والبحثية أن البحث باستخدام تعديل الجينات في الأجنة مهم لأسباب لا تعد ولا تحصى مثل معالجة الأسئلة العلمية حول البيولوجيا البشرية، طالما لم تُستخدم لأغراض إنجابية.

بشكل عام، يمكن استخدام بقايا أجنة قابلة أو غير قابلة للحياة باستخدام تقنيات التلقيح الاصطناعي في أبحاث الأجنة، أو أجنة تم إنشاؤها خصيصًا للبحث، ولكل حالة اعتباراتها الأخلاقية.

ما رأيك عزيزنا القارئ؟ هل تتفق أم تختلف مع لجنة نوبل عن مدى استحقاق تلك الجائزة لتقنيات التعديل الجيني بالرغم من تلك المخاوف؟

مصادر:

[1] National Academies of Sciences, E., Medicine,. (2017). Human Genome Editing: Science, Ethics, and Governance. Washington, DC: The National Academies Press.

[2] The Hinxton Group. (2015). Statement on Genome Editing Technologies and Human Germline Genetic Modification. Retrieved from http://www.hinxtongroup.org/Hinxton2015_Statement.pdf

[3] Araki, M., & Ishii, T. (2014). International regulatory landscape and integration of corrective genome editing into in vitro fertilization. Reprod Biol Endocrinol, 12, 108. doi:10.1186/1477-7827-12-108

[4] Lanphier, E., Urnov, F., Haecker, S. E., Werner, M., & Smolenski, J. (2015). Don’t edit the human germ line. Nature News, 519(7544), 410. doi:10.1038/519410a

[5] Hampton, T. (2016). Ethical and Societal Questions Loom Large as Gene Editing Moves Closer to the Clinic. JAMA, 315(6), 546-548. doi:10.1001/jama.2015.19150

[6] Savulescu, J., Pugh, J., Douglas, T., & Gyngell, C. (2015). The moral imperative to continue gene editing research on human embryos. Protein Cell, 6(7), 476-479. doi:10.1007/s13238-015-0184-y

[7] Ishii, T. (2017). Germ line genome editing in clinics: the approaches, objectives and global society. Brief Funct Genomics, 16(1), 46-56. doi:10.1093/bfgp/elv053

[8] Park, A. (2016). UK Approves First Studies Using New Gene Editing Technique. Time Health.

[9] Araki, M., & Ishii, T. (2014). International regulatory landscape and integration of corrective genome editing into in vitro fertilization. Reprod Biol Endocrinol, 12, 108. doi:10.1186/1477-7827-12-108

[10] Lanphier, E., Urnov, F., Haecker, S. E., Werner, M., & Smolenski, J. (2015). Don’t edit the human germ line. Nature News, 519(7544), 410. doi:doi:10.1038/519410a

[11] The Hinxton Group. (2015). Statement on Genome Editing Technologies and Human Germline Genetic Modification. Retrieved from http://www.hinxtongroup.org/Hinxton2015_Statement.pdf

[12] National Academies of Sciences, E., Medicine,. (2017). Human Genome Editing: Science, Ethics, and Governance. Washington, DC: The National Academies Press.

[13] Callaway, E. (2016). UK scientists gain licence to edit genes in human embryos. Nature News, 530(7588), 18. doi:doi:10.1038/nature.2016.19270

[14] Cyranoski, D., & Reardon, S. (2017). Chinese scientists genetically modify human embryos. Nature News. doi:doi:10.1038/nature.2015.17378

هل يمكن أن يبدأ جسد شخص فجأة بالاحتراق من تلقاء نفسه ؟

هل يمكن أن يبدأ جسد شخص فجأة بالاحتراق من تلقاء نفسه ؟

تعددت الحالات المنتشرة حول العالم التى وُجدت فيها أجساد أشخاص متفحمة تماماً دون احتراق أي من الأشياء الموجودة حولهم.

أثارت الظاهرة المعروفة بالتفحم أو »  الاحتراق الذاتي – spontaneous human combustion (SHC) « العديد من التساؤلات الجدلية والتخمينات المرعبة في الأوساط العلمية.

في البداية يجب التأكيد أن حالات الأحتراق الذاتي جميعها تتم نتيجة تفاعلات كيميائية في الجسم وليست نتيجة أي مصدر حرارة خارجي.

سُجلت أولى حالات الاحتراق الذاتي في التاريخ عام 1663م على يد الطبيب الدنماركي توماس بارثولين، والذي وصف حالة أمرأة عُثر على جسدها متحولاً إلى كومة من الرماد والدخان أثناء نومها دون أن يُمس فراش القش الذي كانت نائمةً عليه.

توجد تسجيلات آخرى ترجع إلى عام 1673م لرجل فرنسي يُدعى جوناس دوبونت ضمت العديد من حالات الاحتراق الذاتي التي حدثت آنذاك في فرنسا تحت عنوان  “De Incendiis Corporis Humani Spontaneis”.

الغريب في الأمر أن جميع الصور الموثقة لحالات الاحتراق الذاتي يظهر فيها دائماً الرأس والجذع متفحمين تماماً، في حين أن الأطراف لا تتضرر بشكل كامل مع بقاء اليدين والقدمين غير محترقين؛ بالإضاقة إلى ظهور سليمة تماماً حول الضحية، لكن في بعض الأحيان تواجدت بقايا دهنية على الأثاث والحوائط.

بالرغم من عدم نجاة الأشخاص في معظم حالات الاحتراق الذاتي، سجلت التقارير حالات آخري اختبر فيها أشخاص حروق غريبة بدأت في الظهور فجأة على أجسادهم.

لكن ماذا هو السبب الحقيقي وراء تلك الظاهرة ؟

بدايةً، لكي يحدث الاحتراق الذاتي لأي جسم يجب أن يتم تسخينه حتى يصل إلى درجة حرارة الاحتراق؛ وإذا استطاع الجسم الاحتفاظ بتلك الحرارة مع التعرض لتيار ثابت من الاكسجين، عندها سيبدأ في الاحتراق تلقائياً دون التقاط النار من أي مصدر خارجي.

نحن نعلم أن تلك العملية يمكن أن تحدث في الأجسام غير الحية، لكن ما هو تفسير حدوثها في الأجسام الحية؟

توجد العديد من الفرضيات التي تفسرحدوث تلك الظاهرة في الأجسام الحية، لكن الأمر مازال جدلياً حتى الآن ولم يتم حسم السبب الحقيقي وراءها بعد.

أولى الفرضيات كانت قد أشار لها الكاتب تشارلز ديكنز في إحدى رواياته عام 1850م، حيث ماتت إحدى شخصيات الرواية بالاحتراق الذاتي نتيجة الإسراف الشديد في شرب الكحول.

هناك العديد من الآراء الآخرى، كأن يكون السبب هو اشتعال غاز الميثان الناتج من بكتيريا الأمعاء بواسطة الانزيمات المحفزة والمسرعة للتفاعلات الكيميائية؛ أو أن تتسبب الكهرباء الساكنة الموجودة في الجسم أو المتولدة من قوى مغناطيسية خارجية في الاحتراق.

ويرجح الخبير لاري أرنولد حدوث تلك الظاهرة لوجود جزيء دون ذري يسمي pyroton، يقوم بالتفاعل مع خلايا الجسم مسبباً انفجارات ميكروسكوبية مصغرة.

على الناحية الأخرى إذا لم يكن الاحتراق الذاتي حقيقي فما هو تفسير تلك الحوادث؟

أحد التفسيرات الممكنة لتلك الحوادث أن الأمر بدأ بالتقاط الجسم للحرارة أو النار من مصدر خارجي، ثم تعامل الجسم مع تلك النار ب  »  تأثر الفتيل – « wick effect؛ أي أنه كما يشتعل فتيل الشمعة ويستمر في الاحتراق بفعل الشمع المتراكم حوله، تشتعل ملابس وشعر الضحية وتستمر في الاحتراق بفعل جلد ودهون الجسم.

أيد عالم الطب الشرعي جون ديهان ذلك التفسير وقام بتجربة تمت إذاعتها عام 1998م، حيث قام بلف جثة خنزير ميت بطبقات من القماش ثم أشعل النار فيها، وبعد ساعات من احتراق الخنزير قام باخماد النار ووجد أن جثة الخنزير تفحمت تماماً فيما عدا الأقدام التي بقيت متماسكة، الأمر يتفق مع الشواهد السابقة لقصص الاحتراق الذاتي.

أما سبب وجود بقايا دهنية على الجدران والآثاث، يرجعه البعض إلى احتراق النسيج الدهني في جسد الضحية.

لكن بالرغم من ذلك يجب أن نأكد على عدم وجود أي استنتاجات نهائية تؤكد أو تنفي ظاهرة الاحتراق الذاتي؛ فالمجتمع العلمي مازال ينظر إلى تلك الظاهرة على أنها أمر جدلي غامض ويحتاج إلي المزيد من الدراسة والبحث.

المصادر HowStuffWorks live science

تقنية جديدة تساعد علي رصد نمو الأنسجة الحية في المختبر

تقنية جديدة تساعد علي رصد نمو الأنسجة الحية في المختبر.

 يمكن لمستشعر الأس الهيدروجيني الضوئي الجديد الذي يعمل على إثبات صحة مفهوم إجراء الدراسات في مجال تجديد و نمو الأنسجة

طبق بتري فارغ مع اثنين من الألياف الضوئية ، يوضح نسخة واحدة من تجربة الباحثين. الألياف اليسرى (عادةً ما تسطع ضوء الأشعة تحت الحمراء ، ولكنها مصورة هنا كضوء أحمر مرئي) هي مستشعر درجة الحرارة. تضيء الألياف العليا الضوء الأخضر أو ​​الأحمر أو الأزرق في طبق بتري لضبط الإشارة التي يقيسها مستشعر درجة الحرارة.

في يوم من الأيام، يود الأطباء أن ينمووا أطرافهم وأنسجة الجسم الأخرى للجنود الذين فقدوا أذرعهم في المعارك، والأطفال الذين يحتاجون إلى قلب أو كبد جديد، والعديد من الأشخاص الآخرين ذوي الاحتياجات الخاصة.

 

اليوم، يمكن الخبراء الطب اخذ خلايا من المريض، وإيداعها في سقالة خاصة للأنسجة، وإدخال السقالة في الجسم لتحفز نمو العظام والغضاريف والأنسجة المتخصصة الأخرى.

لكن الباحثين ما زالوا يعملون على بناء أعضاء معقدة يمكن زرعها في المرضى بشكل آمن.

 يدعم علماء المعهد الوطني للمعايير والتكنولوجيا «NIST» هذا المجال من الأبحاث من خلال تطوير نوع جديد واعد من أجهزة الاستشعار التي تستخدم الضوء لدراسة نمو الأنسجة في المختبر.

 

أظهر عمل فريق «NIST» صحة هذا البحث، الذي نُشر في Sensors and ActuatorsB، حيث أن مستشعرًا صغيرًا يستخدم إشارة تعتمد علي الضوء لقياس كلا من درجة الحموضة ووحدة قياس الحموضة، وهي خاصية مهمة في دراسة نمو الخلايا.

أستخدام أخر للمستشعرات الضوئية:

يمكن استخدام نفس التصميم الأساسي لقياس العوامل الأخرى مثل وجود الكالسيوم وعامل نمو الخلايا وبعض الأجسام المضادة.

على عكس أجهزة الاستشعار التقليدية، يمكن استخدام طريقة القياس هذه، لمراقبة البيئة في الخلية على المدى الطويل – لأسابيع – دون الاضطرار إلى وقف نمو الخلايا بانتظام لمعايرة أدوات الاستشعار.

 

  قال الكيميائي «زيشان أحمد» : إن مراقبة خصائص الأنسجة في الوقت الفعلي مع تغيرها ببطء، على مدار أيام أو أسابيع، يمكن أن يفيد إلى حد كبير في دراسة هندسة الأنسجة على نمو الأسنان وأنسجة القلب والأنسجة العظمية وأكثر من ذلك.

 

وقال د. أحمد أيضا “نريد أن نصنع مستشعرات يمكن وضعها داخل الأنسجة النامية لتزويد الباحثين بمعلومات كمية، هل ينمو النسيج فعليًا؟ هل هو صحي؟ إذا كنت تزرع عظمًا، هل له خصائص ميكانيكية مناسبة أم أنه ضعيف جدًا في دعم الجسم؟

 

 يمكن أن يكون لهذا لعمل فوائد تتجاوز هندسة الأنسجة أيضًا، لتصل إلى دراسة تطور أمراض مثل السرطان.

 

وقال الكيميائي «ماثيو هارتنجز » في «الجامعة الأمريكية» والباحث الضيف في معهد «NIST»: “ما يمكن أن تقدمه هذه المستشعرات للناس هو معلومات في الوقت الفعلي عن نمو الأنسجة وتطور المرض، و إن أجهزة الاستشعار التقليدية تمنح الباحثين سلسلة من اللقطات، دون أن تظهر لهم الطريق بين كل مراحل النمو تلك لكن أجهزة الاستشعار الضوئية، يمكن أن تزود العلماء بمعلومات مستمرة، أي ما يشبه تطبيق تحديد المواقع والملاحة للمرض.

 

وقال «هارتنجز»أيضا : “نريد أن نوفر للباحثين خريطة تفصيلية للتغيرات الإضافية التي تحدث لأن النسيج إما ينمو بطريقة صحية أو يصاب بالمرض”. “بمجرد أن يعرف الباحثون” الطرقات ” التي يدخل بها المرض للخلايا، يمكنهم حينئذٍ منع أو دعم التغييرات التي تحدث” في جسم المريض.

دور الأس الهيدروجيني في نمو الخلايا:

تعد قياسات الرقم الهيدروجيني جزءًا حيويًا من دراسات هندسة الأنسجة، مع نمو الخلايا، تصبح بيئتها بشكل طبيعي أكثر حمضية، إذا أصبحت البيئة حمضية جدًا – أو قاعدية جدًا – تموت الخلايا.

يقيس العلماء الرقم الهيدروجيني على مقياس من 0 (حمضي جدًا) إلى 14 (قاعدي جدًا)، مع بيئة مثالية لمعظم الخلايا في نطاق ضيق حول درجة الحموضة 7.

 

أدوات قياس درجة الحموضة التجارية دقيقة للغاية ولكنها غير مستقرة. وهذا يعني أنها تتطلب معايرة متكررة لضمان قراءات دقيقة يوما بعد يوم. بدون معايرة. تفقد أجهزة قياس درجة الحموضة التقليدية هذه ما يصل إلى 0.1 وحدة من الدقة اليومية.

 

لكن دراسة هندسة الأنسجة تتم على مدار أسابيع. قد تحتاج الخلايا الجذعية إلى النمو لمدة شهر تقريبًا قبل أن تتحول إلى عظام.

 

وقال د. أحمد “الزيادة البالغة 0.1 درجة مئوية مهمة، إذا تغيرت قيمة الرقم الهيدروجيني بمقدار 1. فإنها تقتل الخلايا. إذا كنت لا أستطيع الوثوق بأي شيء بشأن قياس الرقم الهيدروجيني الخاص بي بعد بضعة أيام، فلن أستخدم طريقة القياس هذه.”

 

من ناحية أخرى، إذا قلطه الباحثون نمو الخلايا المتنامية في كل مرة يتعين عليهم فيها قياس درجة الحموضة في بيئة غذاء الخلية، فإن العلماء يقدمون نوعًا آخر من عدم الثقة في قياساتهم. لأنهم يغيرون ظروف بيئة نمو الخلايا.

 

وقال أحمد إن المطلوب هو هذا النوع من البحث ، وهو نظام قياس يمكن أن يبقى داخل حاضنة مع الخلايا في وسط بيئة نموهم ولا يحتاج إلى إزالتها أو معايرتها لأسابيع في المرة الواحدة.

لسنوات، ظل أحمد وفريقه يطورون أجهزة استشعار ضوئية. أجهزة خفيفة الوزن صغيرة تستخدم إشارات ضوئية لقياس مجموعة من الصفات بما في ذلك درجة الحرارة والضغط والرطوبة.

 

 تستخدم بعض هذه الأجهزة الجديدة أليافًا ضوئية مرنة متوفرة تجاريًا ومزودة من الداخل بشبكة تُسمى «Bragg». وهو نوع من المرشح للضوء يعكس أطوال موجية معينة ويسمح للآخرين بالمرور.

التغييرات في درجة الحرارة أو الضغط تغير أطوال موجات الضوء التي يمكن أن تمر عبر الشبكة.

 

من أجل تكييف أجهزتهم الضوئية مع قياس درجة الحموضة، اعتمد أحمد وهارتنغز على مفهوم معروف في العلوم: عندما يمتص جسم ما الضوء، يجب أن تذهب الطاقة الممتصة “إلى مكان ما” ، كما يقول د. أحمد، وفي كثير من الحالات تتحول الطاقة إلى الحرارة.

 

وقال د. أحمدبالنسبة لفوتون واحد، تكون الحرارة المُنتجة كمية صغيرة جدًا من الطاقة، لكن إذا كان لديك الكثير من الفوتونات التي تأتي. وكان لديك الكثير من الجزيئات، فسيصبح هذا تغيرًا ملحوظًا في الحرارة.”

طريقة استخدام وعمل المستشعر الضوئي :

استخدم الباحثون، في بيانهم التوضيحي مادة تتغير لونها استجابة للتغيرات في درجة الحموضة، وهي مادة قد يتذكرها الكثير من الناس في مجال البيولوجيا: مسحوق عصير الملفوف الأحمر.

يغير عصير الملفوف لونه من درجات اللون الأرجواني الداكن إلى اللون الوردي الفاتح حسب درجة حموضة المحلول. يمكن الحصول على هذا التغير في اللون بواسطة مستشعرات درجة حرارة أحمد الضوئية.

 

جهز الباحثون طبق بتري بمحلول عصير «الملفوف». تم وضع الألياف البصرية واحد فوق الطبق، كان متصلاً بمؤشر ليزر وضوء ساطع في العينة، الألياف البصرية الثانية كانت مضمنة فعليا في السائل.

 

احتوت هذه الألياف الثانية على «Bragg» مقضب وكانت بمثابة مستشعر لدرجة الحرارة، وقد سيطر فريق أحمد على الرقم الهيدروجيني للمحلول يدويًا.

 

لإجراء القياس، أضاء الباحثون لونًا واحدًا من الضوء – مثل اللون الأحمر – في العينة، حيث يمتص عصير الملفوف الضوء الأحمر بدرجات متفاوتة بناءً على لونه، والذي يعتمد على درجة الحموضة في المحلول في ذلك الوقت.

تم اختيار ألياف ميزان الحرارة الضوئي ليقوم برصد هذه التغييرات الطفيفة في حرارة العصير، يغير التغير في درجة الحرارة أطوال موجات الضوء التي يمكن أن تمر عبر شبكة «Bragg» للألياف.

بعد ذلك، أضاء الباحثون على اللون الثاني للضوء – مثل الأخضر – في السائل، وكرروا العملية.

بمقارنة مقدار الحرارة الناتجة عن كل لون من الضوء، يمكن للباحثين تحديد اللون الدقيق لعصير الملفوف في تلك اللحظة، وهذا ما أخبرهم درجة الحموضة في بيئة نمو الخلايا.

 

 وقال د. أحمد: “لقد قلنا حرفيًا، هل يمكننا تشغيل وإيقاف مؤشر الليزر لمدة بضع دقائق ومعرفة ما إذا كان بإمكاننا تحويل ذلك إلى جهاز قياس درجة الحموضة؟ وتمكنا من إظهار أنه يعمل على نطاق واسع، من درجة الحموضة من 4 إلى درجة الحموضة من 9 أو 10.”

نتائج البحث :

وقد أظهر العمل المستمر أن قياسات الرقم الهيدروجيني الضوئية تكون دقيقة إلى زائد أو ناقص 0.13 درجة من الأس الهيدروجيني ومستقرة لمدة ثلاثة أسابيع على الأقل، أطول بكثير من القياسات التقليدية.

يقول الباحثون أنه وفقًا للخبراء في هندسة الأنسجة، يمكن لأجهزة الاستشعار الضوئية الجديدة توفير معلومات مفيدة لمجموعة من الأنظمة البيولوجية، التي تتم دراستها، وخاصة نمو خلايا القلب والعظام.

 

لجولات الباحثون القادمة من التجارب، الجارية بالفعل، يستخدم باحثون معهد NIST صبغة أخرى حساسة لدرجة الحموضة، تسمى الفينول الأحمر.

بالإضافة إلى ذلك، يعملون على تغليف الصبغة في غلاف بلاستيكي حول الألياف نفسها، بحيث لا تتفاعل مع وسط أو بيئة نمو الخلية.

يجري الفريق أيضًا أول اختبار للنظام في بيئة نمو لخلية حية، بمساعدة من زملاء معهد NIST المتخصصين في هندسة الأنسجة.

تشمل الخطط المستقبلية قياس الكميات التي تتجاوز درجة الحموضة، لتي تتطلب ببساطة مبادلة أحمر الفينول لصبغة مختلفة حساسة لأي شيء يريد الباحثون قياسه فيما بعد.

 

يأمل د. أحمد في المستقبل ان يمكن استخدام مستشعرات القياس لمراقبة نمو الأنسجة داخل جسم إنسان حقيقي.

 

 

المصدر :   NIST

بطاريات الليثيوم الفائزة بجائزة نوبل الكيمياء 2019 ، كيف تعمل؟ وما أهميتها في حياتنا؟

بطاريات الليثيوم الفائزة بجائزة نوبل الكيمياء 2019 ، كيف تعمل؟ وما أهميتها في حياتنا؟

بطاريات الليثيوم الفائزة بجائزة نوبل الكيمياء 2019 حولك في كل مكان، في هاتفك النقّال وفي سيارتك وفي حاسوبك المحمول وغيرها من الأجهزة التي لا تُلزمك الإلتصاق بجانب قابس الكهرباء كي تبقى حية، في هذا المقال سنأخذكم معنا في جولة إلى عالم البطاريات وتطورها لتعرف كيف تعمل؟ وما أهميتها في حياتنا؟ وصولا إلى بطاريات الليثيوم التي كانت سببا لنيل جائزة نوبل في الكيمياء عام 2019.

بطارية الليثيوم الفائزة بجائزة نوبل الكيمياء 2019 المستخدمة في حياتنا يوميًا

مبدأ عمل البطارية بوجه عام

تحتوي البطارية على عدد من الخلايا والتي تتكون من قطبان موصولان بدارة كهربائية ويفصل بين القطبين محلول أيوني يحوي أيونات موجبة وسالبة، كما يفصل بين القطبان حاجز يمنع تكون دارة كهربائية قصيرة. تبدأ عملية الشحن بأكسدة القطب السالب والذي يعرف بـ«الأنود»، مما يؤدي إلى حركة الألكترون خلال الدارة بإتجاه القطب الموجب المسمى «كاثودا» فيختزل الإلكترون القادم من الدارة، وتعتمد فولتية البطارية على مقدار فرق الجهد بين القطبين وتتم كامل العملية بصورة لحظية أما عملية إعادة الشحن فتتم بصورة عكسية غير لحظية وتحتاج إلى مصدر كهربائي خارجي.

بدايات بطاريات الليثيوم الفائزة بجائزة نوبل الكيمياء 2019

أولى البطاريات ظهوراً هي البطارية الفولتية والتي يمثل فيها عنصر «الزنك» الأنود الذي ينتج الإلكترون للدارة، على الجهة المقابلة يقف كاثود النحاس معتمدا على الظروف المحيطة، ففي جوٍ مليء بالأكسجين يتأكسد النحاس جزئيًا إلى CuO ومن ثم يختزل إلى «النحاس» الحُر مجددًا. أما في غياب الأكسجين يُختزل البروتون الموجود في المحلول الأيوني إلى الهيدروجين على سطح النحاس وتصل فولتية البطارية ما بين 0,8 – 1,1 إعتمادًا على المحيط، كما أن هذه البطارية غير قابلة لإعادة الشحن.

بطاريات (الرصاص-الحمض) المستخدمة كبطارية ابتدائية للسيارات تتشابه إلى حدٍ كبير مع البطارية الفولتية، لكنها تختلف عنها في خاصية إعادة الشحن، نذكر أيضا بطارية «النيكل- الحديد» وبطارية «النيكل-الكادميوم» والتي تعتبر أسلافًا لبطارية «النيكل-الهيدرايد الفلزي».

الليثيوم

تم اكتشاف عنصر الليثيوم عام 1817، بعدده الذري 3، وبكثافته التي لا تتجاوز 0,53 جم/مل ويعد أخف عنصر فلزي كما أنه يمتلك جهد اختزال معياري منخفض، مما يجعله مرشحًا قويًا مناسبًا لخلايا البطاريات عالية الفولتية ومرتفعة الكثافة، وبما أنه عنصر نشط سريع التفاعل، فهو ما يستوجب حمايته وعدم تعريضه للهواء.

عنصر الليثيوم وأيونه الفائزة بجائزة نوبل الكيمياء 2019

تخلل الكاثود

نظرا لأن مرشحنا وعنصرنا النشط قد استحوذ على إعجاب العلماء حيث نصبوه أنودًا، اتجهت الأنظار وقتها لإيجاد كاثود مناسب يحقق جهد فولتي عالي، وقد وقع الإختيار على «TiS2» حيث أثبت هذا المركب قدرته على إحتواء الكترون الليثيوم. فالترتيب الصفائحي لمركب TiS2 وبينها أيونات الليثيوم، سمح لها بالتخلل، كما قدم العالم «والتر رودف-Walter Rudoff» التخلل الكيميائي في الأمونيا السائلة منتجًا «Li(0.6)/TiS2»، لكن الثورة الحقيقية كانت عندما استطاع «إم ستانلي وايتيجتون-M.Stanely Whittington» و «فريد جامبل-Fred Gamble» إيضاح أن عملية التخلل تتم ضمن الصيغة «Li(x)TiS2» حيث x أكبر من صفر وأقل أو تساوي واحد. هذه المادة كانت نظير «CdI(2)-NiAs» وأيونات الليثيوم وهذا بدوره حفز وايتنجون لإكتشاف التخلل الكهروكيميائي في هذه المواد، ومع بداية 1973 قدّم هذه المواد كأقطاب في البطاريات.

خلية بطاريات الليثيوم الفائزة بجائزة نوبل الكيمياء 2019

خلية البطارية مكونة من عنصر الليثيوم كـ أنود و«TiS2» كـ كاثود و«LiPF6» كمحلول أيوني مُذاب في «كربونات البروبيلين-Propylene carbonate» القوة المُحركة الكهربائية للخلية تقترب من 2.5 فولت وتظهر كثافة التيار الأساسي قريبة من ١٠ مترأمبير لكل سم مربع وهذا يعطينا: «(XLi + TiS(4) – → Li(x)TiS(2» ويستمر التفاعل بتخلل أيونات الليثيوم في شبكة «TiS2».

عملياً:

يتم خلط بودرة TiS2 مع «التفلون-Teflon» وترتبط مع داعم معدني مُحاط بفلز بولي بروبالين ومعدن الليثيوم. ولزيادة مرونة الدارة وحركتها بنسبة ١١٠٠ مرة أكبر، يتم غمس خليط من «تيتراهيدروفيوران-Tetrahydrofuran» و «Dimethoxyethane» يحوي على «LiClO 4».

المشكلة التي نسعى لحلها الآن هي حماية الليثيوم وتقليل تفاعله مع الجو، حيث أنه تم العثور على زوائد شجرية تكونت على سطح الخلية لها القدرة على اختراق الطبقة العازلة والوصول إلى القطب الآخر وبالتالي تكون دارة قصيرة أدت إلى انفجارات.

تكوين زوائد وشجيرات الليثيوم التي تتسبب في الدارة القصيرة

الحل أتى في نهاية عام 1979:

على يد «جون جودنوف-John B.Goodenough» وزملائه في جامعة أكسفورد الفائزون بنوبل الكيمياء 2019 وفقًا لبيان اللجنة العلمية لنوبل ، حيث وجد أن «Li(x)CoO» وهو مركب نظير «Li(x)TiS 2» من الممكن أن يعمل كـ «كاثود» لكن بدون توسع الشبكة حيث أن عنصر صغير سالب الشحنة كالأكسجين الذي سيأخذ الأيون الموجب بعملية مصحوبة بتغير أكبر في الطاقة الحرة السالبة وبفولتية أعلى كما أنه سيُتاح لأيونات الليثيوم حركة كافية في شبكات الأكسجين المغلفة المُغلقة، وقد تحقق ذلك مع فرق جهد وصل 5,4 فولت.

بطاريات الليثيوم المعتمدة على الـ LixCoO2

الثورة الثالثة في عالم البطاريات:

تمت في عام 1985 على يد مجموعة بقيادة «اكيرا يوشين- Akira Yoshin» حيث لجأ إلى مركبات الفحم البترولية المستقرة، تتكون هذه المادة من خليط كريستالي وغير كريستالي، وبإستخدام درجة كريستالية محددة ومستقرة بحيث تشكل المنطقة المحيطة حماية للجزء الكريستالي، فاستطاعت أيونات الليثيوم وبشكل متكرر التخلل في هذه المواد. طوّر يوشين بطارية الليثيوم إعتمادًا على ترتيب إنتقال الأيون في الخلية، واستخدم الكربون كـ «أنود» و«Li(x)CoO 2» ك «كاثود»، وتتألف الطبقة العازلة من البولي ايثلين أو بولي بروبولين، والمحلول الأيوني عبارة عن «LiClO 4» المُذاب في كربونات البروبولين. هذه التطورات أدت إلى إنتاج بطاريات الليثيوم تجاريا عام 1991 بفولتية تصل إلى 4.1 و بكثافة طاقة أقتربت من 200 وات لكل لتر، واتضح أن أدخال الجرافيت مع المكونات الأيونية المناسبة بدوره قد يوصل الفولتية إلى 4.2 وبطاقة تقترب من 400 وات لكل لتر.

انتقال أيون الليثيوم داخل بطاريات الليثيوم وتعديلاتها

المصادر:
بيان جائزة نوبل الكيمياء العلمي 2019

(1) Volta, A. On the Electricity Excited by the Mere Contact of Conducting Substances of Different
Kinds. Philos. Trans. Royal Soc. 1800, 90, 403–431.
(2) Planté, G. Nouvelle Pile Secondaire d’une Grande Puissance. Comptes Rendus Acad. Sci.
1860.
(3) Planté, G. The Storage of Electrical Energy: And Researches in the Effects Created by
Currents Combining Quantity with High Tension; London: Whittaker, 1887.

(4) Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium Ion, Lithium Metal, and Alternative
Rechargeable Battery Technologies: The Odyssey for High Energy Density. J. Solid State
Electrochem. 2017, 21 (7), 1939–1964.
(5) Munro, J. Pioneers of Electricity; or, Short Lives of the Great Electricians; London: The
Religious Tract Society, 1890.
(6) Sinsteden, W. J. Versuche über den Grad der Continuität und die Stärke des Stroms eines
grössern magneto-elektrischen Rotations. Ann. Phys. Chem. 1854, 92, 1–21.
(7) Gautherot, N. Sur le galvanisme. Ann. Chim. 1801, 39, 203–210.
(8) Jungner, E. W. Sätt att på elektrolytisk väg förstora ytan af sådana metaller, hvilkas
syreföreningar äro kemiskt olösliga i alkaliska lösningar. Swedish patent no. 15567, 1901.
(9) Jungner, E. W. Primärt eller sekundärt elektriskt element. Swedish patent no. 10177, 1899.
(10) Edison, T. A. Reversible Galvanic Battery. US patent no. 692,507, 1902.
(11) Arfwedson, J. A. Untersuchung einiger bei der Eisen-Grube von Utö vorkommenden Fossilien
und von einem darin gefundenen neuen feuerfesten Alkali. J. Chem. Phys. 1818, 22, 93–117.
(12) Berzelius, J. J. Ein neues mineralisches Alkali und ein neues Metall. J. Chem. Phys. 1817, 21,
44–48.
(13) Glaize, C.; Genié, S. Lithium Batteries and Other Electrochemical Storage Systems; ISTE
Ltd., 2013.
(14) Lewis, G. N.; Keyes, F. G. The Potential of the Lithium Electrode. J. Am. Chem. Soc. 1913,
35, 340–344.
(15) Harris, W. S. Electrochemical Studies in Cyclic Esters; PhD thesis, University of California,
Berkeley, 1958.
(16) Yao, Y.-F. Y.; Kummer, J. T. Ion Exchange Properties of and Rates of Ionic Diffusion in BetaAlumina. J. Inorg. Nucl. Chem. 1967, 29 (9), 2453–2475.
(17) Kummer, J. T.; Neill, W. Thermo-Electric Generator. US patent No. 3,458,356, 1969.
(18) Newman, J. Transport in Electrolytic Solutions. Adv. Electrochem. Electrochem. Eng. 1967,
5, 87–135.
(19) Whittingham, M. S. Chemistry of Intercalation Compounds: Metal Guests in Chalcogenide
Hosts. Prog. Solid State Chem. 1978, 12 (1), 41–99.
(20) Rüdorff, W. Chimia 1965, 19, 489.
(21) Bichon, J.; Danot, M.; Rouxel, J. Systematique Structurale Pour Les Series d’intercalaires
Mxtis2 (M= Li, Na, K, Rb, Cs). Comptes Rendus Acad. Sci., Ser. C, Sci. Chim. 1973, 276, 1283–
1286.

(22) Whittingham, M. S.; Gamble, F. R. The Lithium Intercalates of the Transition Metal
Dichalcogenides. Mater. Res. Bull. 1975, 10 (5), 363–371.
(23) Whittingham, M. S. Electrointercalation in Transition-Metal Disulphides. J. Chem. Soc.,
Chem. Commun. 1974, 328–329.
(24) Whittingham, M. S. Batterie à Base de Chalcogénures. Belgian patent no. 819672, 1975.
(25) Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976,
192 (4244), 1126–1127.
(26) Whittingham, M. S. History, Evolution, and Future Status of Energy Storage. Proc. IEEE
2012, 100, 1518–1534.
(27) Armand, M. B. Intercalation Electrodes. In Materials for Advanced Batteries. NATO Conf.
Ser. (VI Mater. Sci.); Murphy, D. W., Broadhead, J., Steele, B. C. H., Eds.; Springer, Boston, MA,
1980, 2, 145–161.
(28) Armand, M.; Touzain, P. Graphite Intercalation Compounds as Cathode Materials. Mater.
Sci. Eng. 1977, 31, 319–329.
(29) Rüdorff, W.; Hofmann, U. Über Graphitsalze. Z. Anorg. Allg. Chem. 1938, 238, 1–50.
(30) Schafhaeutl, C. Über die Verbindungen des Kohlenstoffes mit Silicium, Eisen und anderen
Metallen, welche die verschiedenen Gallungen von Roheisen, Stahl und Schmiedeeisen bilden. J.
Prakt. Chem. 1840, 3, 129.
(31) Fredenhagen, K.; Cadenbach, G. Die Bindung von Kalium durch Kohlenstoff. Z. Anorg. Allg.
Chem. 1926, 158, 249.
(32) Goodenough, J. B.; Mizushima, K. Fast Ion Conductors. US patent no. 4,357,215, 1982.
(33) Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0<x<-1): A New
Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980, 15 (6), 783–789.
(34) Yoshino, A.; Sanechika, K.; Nakajima, T. Secondary Battery. US patent no. 4,668,595, May
26, 1987.
(35) Yoshino, A.; Sanechika, K.; Nakajima, T. Japanese patent no. 1989293, 1985.
(36) Yoshino, A. The Birth of the Lithium-Ion Battery. Angew. Chem. Int. Ed. 2012, 51, 5798–
5800.
(37) Nishi, Y. The Development of Lithium Ion Secondary Batteries. Chem. Rec. 2001, 1, 406–
413.
(38) Fong, R.; Sacken, U. von; Dahn, J. R. Studies of Lithium Intercalation into Carbons Using
Nonaqueous Electrochemical Cells. J. Electrochem. Soc. 1990, 137 (7), 2009–2013.

(39) Peled, E. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous
Battery SystemsThe Solid Electrolyte Interphase Model. J. Electrochem. Soc. 1979, 126 (12),
2047–2051.
(40) Padhi, A. K.; Nanjundaswami, K. S.; Goodenough, J. B. Phospho-Olivines as PositiveElectrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144, 1188–
1194.
(41) Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Lithium Insertion into
Manganese Spinels. Mater. Res. Bull. 1983, 18, 461–472.

بطارية الليثيوم الفائزة بجائزة نوبل الكيمياء 2019 المستخدمة في حياتنا يوميًا

استخلاص وقود نظيف من أشعة الشمس

هذه المقالة هي الجزء 4 من 22 في سلسلة موضوعات تأسيسية في الطاقة المتجددة

إن تأمين طاقة تكفي لتلبية احتياجات البشر هو أحد أكبر التحديات التي تواجه المجتمع، فمصادر الطاقة التي نستخدمها كالبترول والغاز الطبيعي والفحم مصادر غير متجددة وغير نظيفة تسبب تلوث الهواء والاحتباس الحراري الذي يزداد عامًا بعد عام. وفي نفس الوقت، وبحلول عام 2050 سيصل عدد الأشخاص الذين يعملون بالقطاع الصناعي إلى 10 مليارات. القطاع الصناعي سيستمر في النمو، وستنمو معه حاجتنا إلى الطاقة، لذا فإن التوصل إلى مصادر بديلة ونظيفة للطاقة أمر في غاية الأهمية. 

يستكشف الباحثون في ASU’s Biodesign Center تقنيات جديدة يمكن أن تمهد الطريق للحصول على طاقة متجددة ونظيفة، للمساعدة في تلبية الطلب العالمي للطاقة.

وفي بحثهم الجديد الذي نُشر في مجلة الجمعية الأمريكية (JACS)، يقوم المؤلف الرئيسي برايان وادزورث، إلى جانب الزملاء آنا بيلر، وديانا خوسنوتدينوفا، وإدجار رييس كروز، والمؤلف غاري مور بوصف تقنية جديدة، والتي تعتمد في عملها على أشباه الموصلات المجمعة للضوء والمواد الحفزية، حيث يحدث داخل الجهاز تفاعلات كيميائية ينتج عنها هيدروجين وأنواع مختزلة من الكربون، والتي يمكن استخدامها لإنتاج وقود نظيف كبديل لمصادر الوقود الحفري.

يقول غاري مور: “في هذا العمل بالذات، قمنا بتطوير أنظمة تدمج تقنيات التقاط وتحويل الضوء مع استراتيجيات تخزين الطاقة المعتمدة على المواد الكيميائية”، فبدلًا من توليد الكهرباء مباشرة من أشعة الشمس، يستخدم هذا الجيل الجديد من التكنولوجيا الطاقة الشمسية لتوليد تفاعلات كيميائية قادرة على إنتاج وقود يختزن طاقة الشمس في روابطه الكيميائية.

شئ جديد تحت أشعة الشمس

أحد المصادر الأكثر جاذبية لإنتاج طاقة مستمرة ونظيفة هو ضوء الشمس. في الواقع، اكتسبت تقنيات الطاقة الشمسية زخمًا كبيرًا في السنوات الأخيرة.

تقوم الخلايا الشمسية بجمع أشعة الشمس وتحويل الطاقة مباشرة إلى كهرباء.  وقد جعلت التكنولوجيا المتطورة والتكاليف المنخفضة من الخلايا الكهروضوئية خيارًا جذابًا كمصدر للطاقة، خاصة في المناطق التي تغمرها الشمس مثل ولاية أريزونا، مع صفائح شمسية كبيرة تغطي مساحات واسعة قادرة على تزويد آلاف المنازل بالطاقة.

 يعتقد مور أن مجرد الحصول على الطاقة الشمسية باستخدام الخلايا الكهروضوئية لا يكفي، حيث لا تتوفر دائمًا العديد من مصادر الطاقة المتجددة مثل أشعة الشمس وطاقة الرياح، لذلك يعد تخزين الطاقة من هذه المصادر جزءًا رئيسيًا من أي تكنولوجيا مستقبلية لتلبية متطلبات الطاقة البشرية العالمية على نطاق واسع.

التوهج الشمسي

إحدى الحيل المثيرة للإعجاب في الطبيعة استخدام أشعة الشمس لإنتاج مواد كيميائية غنية بالطاقة، وهي عملية أُتقنت منذ مليارات السنين من قبل النباتات والكائنات العضوية الأخرى التي تقوم بالتمثيل الضوئي. يعقب مور قائلًا: “في هذه العملية، يتم امتصاص الضوء، وتستخدم الطاقة لبدء سلسلة من التفاعلات الكيميائية الحيوية المعقدة التي تنتج في نهاية المطاف الغذاء الذي نتناوله، وعلى مدى الأزمنة الجيولوجية الطويلة الوقود الذي يدير مجتمعنا الحديث”.

في الدراسة الحالية، قامت المجموعة بتحليل المتغيرات الرئيسية التي تحكم كفاءة التفاعلات الكيميائية المستخدمة لإنتاج الوقود من خلال أجهزة اصطناعية مختلفة. وقال وادزورث: “في هذه الورقة ، قمنا بتطوير نموذج حركي لوصف التفاعل بين امتصاص الضوء على سطح أشباه الموصلات، وانتقال الشحنة داخل أشباه الموصلات، ونقل الشحنة إلى طبقة العامل الحفاز، ثم خطوة الحفز الكيميائي”.

يعتمد النموذج الذي طورته المجموعة على إطار مماثل يحكم سلوك الإنزيم، والمعروف باسم Michaelis-Menten kinetics، والذي يصف العلاقة بين معدلات التفاعل الحفزية والوسط الذي يحدث فيه التفاعل. هنا،  طُبقَ هذا النموذج على جهازهم الذي يجمع بين أشباه الموصلات لتجميع الضوء والمواد الحفزية لتشكيل الوقود.

في نمذجة ديناميات النظام، حققت المجموعة اكتشافًا مفاجئًا. يقول مور: “في هذا النظام بالذات، لا نقتصر على السرعة التي يمكن بها للعامل الحفاز أن يدفع التفاعل الكيميائي، نحن مقيدون بالقدرة على إيصال الإلكترونات له وتنشيطه. وهذا مرتبط بكثافة الضوء الذي يصل إلى السطح. وقد أظهرت تجاربنا أن زيادة شدة الضوء تزيد من معدل تكوين الوقود”

لهذا الاكتشاف آثار على التصميم المستقبلي لهذه الأجهزة مع التركيز على زيادة كفاءتها. يوضح مور: “ببساطة إضافة المزيد من العامل الحفاز لا يؤدي إلى زيادة معدلات إنتاج الوقود. نحن بحاجة إلى النظر في خصائص امتصاص الضوء لأشباه الموصلات الأساسية، الأمر الذي يفرض علينا بدوره المزيد من التفكير في اختيار العامل الحفاز وكيفية تفاعله مع مكون امتصاص الضوء في الجهاز”

بريق من الأمل

لا يزال هناك الكثير من العمل الذي يجب القيام به قبل أن تكون هذه التقنية جاهزة للاستعمال. فاستعمالها على نطاق واسع  سيتطلب رفع كفاءتها واستقرارها. 

هذا البحث الجديد هو مجرد خطوة صغيرة على طريق طويل من أجل مستقبل نعتمد فيه على مصادر الطاقة المتجددة. نتائج هذه الدراسة بالغة الأهمية، لأنها ذات صلة على الأرجح بمجموعة واسعة من التفاعلات الكيميائية التي تشمل مواد ماصة للضوء وعوامل حفازة. يقول مور: “المبادئ الأساسية ، وخاصة العلاقة بين شدة الإضاءة وامتصاص الضوء والحفز ينبغي أن تنطبق على مواد أخرى أيضًا”.

المصدر: Phys.org

Exit mobile version