لغز أشعة جاما المميتة المتسللة بين الغيوم!

تطلق العواصف الرعدية عصفات قوية من أشعة جاما علي شكل انفجارات قوية يقاس طولها بالملليِ ثانية وتسمي ومضات أشعة جاما الأرضية. [1] وتنتج هذه الانفجارات أيضا أشعة من الإلكترونات وحتي من المادة المضادة التي تستطيع السير نصف الطريق حول الكرة الأرضية. إن جميع التفسيرات المقترحة تتضمن مجالات كهربائية قوية مطلقة للإلكترونات مندفعة بقوة إلي داخل السحب الرعدية، ولكن لايوجد تفسير يفسر تماما الطاقات المنحدرة عموديا لأشعة جاما. ولكن، ربما تحل هذا اللغز المهمات الفضائية الموجهة حديثًا والطائرات البحثية، إضافة إلى بحثها عما إذا كانت الومضات تعرض رحلات خطوط الطيران لأخطار إشعاعية.

هل سبق أن رأيت وميضًا من الضوء الأزرق اللامع في السماء أثناء عاصفة رعدية؟ إذا كان الأمر كذلك، فأنت قد حضرت دفقة مماثلة من أشعة جاما الأرضية. أشعة جاما هي شكل من أشكال الإشعاع الكهرومغناطيسي لها طاقة عالية جدًا. عادة ما يتم إنتاجها من مصادر خارج الأرض، مثل انفجارات المستعر الأعظم أو أشعة الشمس. ولكن في الواقع، يمكن أيضًا إنتاجها داخل الغلاف الجوي للأرض أثناء العواصف الرعدية.

ومضات أشعة جاما الأرضية هي أحداث قصيرة العمر للغاية، تستمر عادةً لبضع مللي ثانية فقط. إنها قوية جدًا أيضًا، حيث يمكن أن تصل طاقتها إلى مليارات الإلكترون فولت. فما الذي يسبب ومضات أشعة جاما الأرضية؟ لا يزال العلماء غير متأكدين من الإجابة، ولكن هناك عدد من النظريات المحتملة. إذن، فما هي أهمية ومضات أشعة جاما الأرضية؟ لا تزال العلوم تدرس هذه الظاهرة، ولكن هناك عددًا من الإمكانات المحتملة أيضًا. على سبيل المثال، يمكن استخدام ومضات أشعة جاما الأرضية لدراسة كيفية عمل العواصف الرعدية، ويمكن أن تساعدنا أيضًا على فهم المزيد عن الإشعاع الكوني.

في السنوات الأخيرة، بذلت الجهود لدراسة ومضات أشعة جاما الأرضية بشكل أكبر. وتم إطلاق العديد من المهمات الفضائية لدراسة هذه الظاهرة، كما تم تطوير تقنيات جديدة للكشف عن ومضات أشعة جاما الأرضية. ومع استمرار البحث في ومضات أشعة جاما الأرضية، نتعلم المزيد عن هذه الظاهرة الغريبة والمذهلة. فهل أنت مستعد لمعرفة المزيد عن ومضات أشعة جاما الأرضية؟

رصد محير بالقرب من الأرض

في عام 1991، أدرك “فيشمان” من مركز ناسا مارشال لرحلات الفضاء، بواسطة المرصد الجديد “كومبتون” أن هناك شيئا غريبا يحدث. المرصد كومبتون المطلق إلي مدار الكرة الأرضية من سفينة الفضاء أتلانتس مصمم للكشف عن أشعة جاما المنبعثة من الأجسام الفيزيائية الفلكية البعيدة. كتلك التي تنبعث من النجوم النيترونية وبقايا النجم المستعر. وقد نجح المرصد بالفعل في تسجيل انفجارات ساطعة طولها ملِلي ثانية من أشعة جاما، ولكن هذه المرة -على غير العادة- تأتي الآشعة من الأسفل، أي من الأرض، وليست من الفضاء الخارجي!

مثلت تلك الحادثة صدمة لعلماء الفيزياء الفلكية. فلقد اعتقد علماء الفيزياء الفلكية أن الظواهر الغريبة مثل التوهجات الشمسية والثقوب السوداء والنجوم المتفجرة تسرع الإلكترونات وغيرها من الجسيمات إلي طاقات عالية للغاية. ومن ثم تستطيع هذه الجسيمات الفائقة الشحن بث أشعة جاما، وهي الفوتونات الأكثر طاقة في الطبيعة. وفي الأحداث الفيزيائية الفلكية، تتسارع الجزيئات خلال الحركة الحرة -أو الحرة تقريبا- في الفراغ. فكيف إذن, تستطيع الجزيئات في الغلاف الجوي للأرض من فعل الشئ نفسه ؟ [3]

قادت البيانات الأولية إلي الاعتقاد مبدئيا أن ما يدعى بومضات أشعة جاما الأرضية قد نشأت على ارتفاع 40 ميلا فوق السحب. والمدهش أنها تنبعث على ارتفاع أقل من مكان نشأتها بكثير بواسطة التفريغ الكهربائي داخل السحب الرعدية المتنوعة. وخلال ذلك، تسعى الكثير من النظريات المتطورة إلى تفسير أشعة جاما الأرضية تلك بما يتوافق مع المشاهدات. فمرة بعد أخري، تكشف التجارب عن طاقات كان يستحيل من قبل تخيل وجودها في الغلاف الجوي. وحتي المادة المضادة حققت ظهورا مفاجئا.

الشروع في وضع أولي التصورات

ظاهرة سبرايتس ( عفاريت البرق) Sprites

في البداية، تساءل العلماء عما إذا كانت لأشعة جاما علاقة بأعجوبة أخرى من عجائب الغلاف الجوي المكتشفة قبل سنوات قليلة فقط. إذ التقطت الكاميرات الموجهة فوق السحب الرعدية صورا ضوئية لومضات قصيرة لامعة من الضوء الأحمر على ارتفاع 50 ميلا فوق سطح الأرض وعلى مسافة عدة أميال، وكانت هذه الصور وكأنها لقنديل بحر عملاق. هي ليست قنديلًا بالطبع ولكن تفريغ كهربي، وسمي هذا التفريغ الكهربي المذهل تسمية غريبة وهي “سبرايتس” sprites العفاريت، ولأن سبرايتس تصل تقريبا إلى حدود الفضاء، فيبدو الأمر مقنعا أنها ربما هي من أطلق أشعة جاما، التي قد يراها مسبار ما يدور حول الأرض كمرصد كومبتون. [2]

بعد وقت قصير، قام الفيزيائيون النظريون بأولى المحاولات لشرح كيف يمكن لسبرايتس إنتاج أشعة جاما المرتبطة بالفضاء. ويعتقد أن سبرايتس هي عبارة عن تأثيرات جانبية للبرق الطبيعي الحادث في السحب على ارتفاع منخفض جدا. والبرق هو عبارة عن قناة موصلة كهربائيا، تفتح مؤقتا في الهواء، الذي يكون عازلا كهربائيا في تلك الحالة. وتحمل الصاعقة الإلكترونات بين مناطق الغلاف الجوي أو بين الغلاف الجوي والأرض، ويحدث هذا بسبب عدم اتزان الشحنات الكهربائية التي تنطلق بواسطة المجالات الكهربائية الناتجة، والتي يزيد فرق جهدها على 100 مليون فولت.

تصور جيوريفتش لومضات جاما بواسطة السحب الرعدية

إن الاندفاع العنيف للإلكترونات يعيد الاتزان الكهربائي جزئيا، مثلما يحدث عندما نشد سجادة من أحد أطرافها، فإنه غالبا ما يؤدي إلى نتوء باتجاه معاكس فى مكان آخر. أي أنه غالبا ما ينبثق عن التفريغ الكهربائي داخل السحب مجال كهربائي فى مكان آخر، بما فى ذلك سطح الأرض. حيث يمكن أن يؤدي لاحقا إلي برق صاعد من أسفل الغلاف الأيوني للأرض حيث قد تنشأ سبرايتس.

في عام 1992 استطاع “جيوريفيتش” من معهد ليبديف الفيزيائي فى موسكو ومعاونوه أن يبينوا أن المجالات الكهربائية الثانوية بالقرب من الغلاف الأيوني للأرض يمكن أن تنتج كما هائلا من الإلكترونات عالية الطاقة، والتي عند اصطدامها بالذرات، تنطلق منها فوتونات أشعة إكس ذات الطاقة العالية، بالإضافة إلى أشعة جاما، بالتوهج الأحمر المميز لظاهرة سبرايتس.

هذه الآلية التي جري افتراضها مستنتجة من قبل العالم “ويلسون” في عام 1920 الحائز على جائزة نوبل. وعند الطاقات الصغيرة، تتصرف الإلكترونات المندفعة كالبحارة المخمورين، حيث تتدافع من جزئ إلي آخر فاقدة طاقتها مع كل تصادم. أما عند الطاقات العالية، فتسير الإلكترونات فى خط مستقيم، مكتسبة طاقة عالية من المجال الكهربائي، مما يقلل من تأثير أي تصادم فى اضطراب مسارها وهكذا. و تختلف هذه النتيجة مع خبراتنا اليومية، حيث كلما أسرعنا فى الحركة، زادت معاناتنا مع القوة العكسية، تماما مثل ما يعانيه سائق دراجة بسبب مقاومة الهواء. [4]

تستطيع تلك الإلكترونات الهاربة التسارع إلي سرعة الضوء تقريبا وتسير إلي أميال قبل توقفها بدلا من المسافة الصغيرة التي يتحركها الإلكترون عادة فى الهواء. وقد أرجع فريق “جيوريفيتش” إلى أن اصطدام الإلكترون الهارب بجزيء الغاز فى الهواء، يمكنه من تحرير إلكترون آخر، ويتسارع هذا الإلكترون. والنتيجة تشبه تفاعل متسلسل، حيث تندفع الإلكترونات عالية الطاقة بشكل هائل وتتزايد لوغاريتميا مع المسافة المقطوعة فتقطع مسافات بعيدة مع امتداد المجال الكهربائي. وتأثير الاندفاع الهائل للإلكترونات طبقا لحسابات “جيوريفيتش”، من الممكن أن يزيد إنتاج أشعة إكس وأشعة جاما بمقادير مضاعفة. ويبدو هذا التصور لبرهة مقبولا بشدة بسبب قدرته على توحيد ظاهرتين جويتين منفصلتين، وهما ومضات أشعة جاما وظاهرة السبرايتس. ولكن كما سوف نري، اتضح أن الواقع أكثر تعقيدا.

مزاعم ربط أشعة جاما بظاهرة سبرايتس

خلال السنوات العديدة اللاحقة ابتداء من عام 1996، ظهرت العديد من الفرضيات الدقيقة للنظرية التي تصورت سبرايتس كاندفاعات هائلة من الإلكترونات منتجة أشعة جاما. ودليل واحد هو الذي دعم هذا النموذج الشبحي، وهو طيف الطاقة لأشعة جاما. فأشعة جاما ذات الطاقة العالية تسير مسافات أبعد في الهواء أكثر من الأشعة الأقل طاقة، ومن ثم فهي الأكثر احتمالا لفعل ذلك في الفضاء. وبحساب عدد فوتونات أشعة جاما التي تصل إلى سفينة الفضاء عند كل مستوى طاقة، يستطيع العلماء استنتاج ارتفاع مصدرها. وقد أشارت أولى اختبارات الطاقة لأشعة جاما، كما جرى رصدها بواسطة المرصد CGRO، إلى وجود مصدر على ارتفاع عال جدا، وهذا متناسق مع ظاهرة سبرايتس، ولكن في عام 2003، أخذت الأحداث منحى غير متوقع!

فخلال العمل في موقع أبحاث البرق في فلوريدا وقياس الانبعاثات من أشعة إكس التي تصل الأرض من برق الصاروخ المنطلق، اكتشف “وَير” -فيزيائي فلكي وأستاذ في معهد فلوريدا للتقانة- ومعاونوه ومضة لامعة من أشعة جاما تخرج من سحابة رعدية، ثم غمرت المنطقة من حولهم. هذا الوميض المسجل على الأجهزة شابه تماما إحدى ومضات أشعة جاما الأرضية التي اعتقد الجميع أنها نشأت عن مكان أكثر بعدًا، وذلك لأن الأشعة لها الطاقة نفسها والفترة الزمنية ذاتها، وهي نحو 0.3 مللي ثانية.

اعتقد الجميع أن هذه الومضات آتية من ارتفاعات عالية يتعذر رؤيتها من الأرض. وقد أوحى التشابه أنه ربما تكون الصواعق البرقية في داخل السحب الرعدية من المصادر المباشرة لأشعة جاما الواصلة إلى المرصد CGRO، ولكن في الوقت نفسه بدت الفكرة ضربا من الهوس. إذ يتعين أن يكون الضوء شديدا للغاية للحصول على أشعة جاما كافية للخروج إلى الفضاء عبر كل الغلاف الجوي.

مصور التحليل الطيفي RHESSI ودحض الادعاء

بعد وقت قصير، استطاعت تطورات أخرى إبطال المزاعم المرتبطة بين سبرايتس وأشعة جاما. ففي عام 2002 أطلقت ناسا NASA مصور التحليل الطيفي الشمسي العالي الطاقة RHESSI لدراسة أشعة إكس وأشعة جاما من الشمس، ولكن مجسات الجرمانيوم الكبيرة الخاصة بالمرصد RHESSI كانت ممتازة لقياس أشعة جاما القادمة من الغلاف الجوي بكفاءة عالية. وقام “سميث” -فيزيائي فلكي في جامعة كاليفورنيا ضمن فريق المرصد RHESS- بتوظيف “أ.لوبيز” التي كانت حينئذ طالبة في المرحلة الجامعية الأولى بجامعة كاليفورنيا، لتنظر في سيل البيانات المسجلة من قبل المرصد RHESSI لسنوات، بحثا عن أي دليل لأشعة جاما المنبعثة من ارتفاعات منخفضة من الأرض.

وفي هذا الوقت، كان يُعتقد أن ومضات أشعة جاما الأرضية نادرة جدا، ولكن كان الحظ حليف لوپیز التي صادفت اكتشافا نفيسا. كان المرصد RHESSI يسجل ومضة مرة كل بضعة أيام أكثر بعشر مرات من المعدل الذي جرى رصده من قبل المرصد CGRO. لقد قاس المرصد RHESSI طاقات فوتونات أشعة جاما في كل ومضة بشكل أفضل بكثير مما فعله مرصد CGRO. ويبدو طيف أشعة جاما الضوئي مماثلا تماما لما هو متوقع من الإلكترونات الهاربة. وبمقارنة تلك القياسات بالقياسات النظرية المتوقعة، استُنتِج أن أشعة جاما مرت عبر الكثير من الهواء، ومن ثم يجب أن تكون قد نشأت عن ارتفاع  تقريبي يتراوح بين تسعة أميال وثلاثة عشر ميلا، وهي مسافة مساوية تماما لأعالي العواصف الرعدية ولكنها أقل بكثير من ارتفاع الخمسين ميلا حيث توجد ظاهرة سبرايتس.

تجمعت سريعا أدلة مستقلة إضافية تؤيد منشـأ الارتفاع المنخفض لأشعة جاما. وأوضحت القياسات الإشعاعية التي أجريت بواسطة “کومر” -من جامعة ديوك- للبرق المرتبط ببعض سجلات المرصد RHESSI أن هذه الومضات البرقية أضعف بكثير مما يتطلب لعمل ظاهرة سبرايتس. وتبدو خريطة المرصد RHESSI لومضات أشعة جاما حول العالم مشابهة تماما للبرق الطبيعي، الذي يتركز في المناطق الاستوائية وأقل بكثير من محاولات مقاربتها بخريطة ظاهرة سبرايتس، التي تتجمع غالبًا على ارتفاعات أعلى من السهول العظمى بالولايات المتحدة الأمريكية.

حجة تعيد الشكوك

بقيت حجة واحدة لتفضيل ظاهرة سبرايتس كمنشأ، وهي أن طيف الطاقة طبقا لأرصاد CGRO يشير إلى مصدر عالي الارتفاع. يتفق ذلك أكثر مع ظاهرة سبرايتس عن العواصف الرعدية. فقد بدأ الكثيرون في الاعتقاد بأن من المحتمل وجود نوعين من ومضات أشعة جاما، منخفضة وعالية الارتفاع، ولكن التأكيد النهائي لفكرة سبرايتس جاءت عندما أدركنا أن ومضات أشعة جاما الأرضية كانت أكثر إضاءة مما كان يعتقد سابقا.

في الواقع، أثناء العمل فيما بعد مع طالب دراسات عليا  “جريفينستيت” في عام 2008، وجد أن هذه الومضات كانت شديدة السطوع حتى إن المرصد CGRO كان معمى جزئيا بسببها، ولم يستطع قياس الشدة الكلية الحقيقية لها. هذا التشبع أثّر أيضا في المرصد RHESSI ولكن بدرجة أقل. وعندما أعاد الباحثون في جامعة بيركن بالنرويج تحليل البيانات في عام 2010، وجدوا أن بعد أخذ تشبع أجهزة الرصد في الاعتبار، قد جعل النتائج متوافقة مع المصادر الأقل ارتفاعًا. وبعد أقل من سنتين، هبط الارتفاع المزعوم في البيانات المسجلة لومضات جاما أكثر من 30 ميلا. [6]

مسببات المادة المضادة

إذا كانت سبرايتس ليست هي المسؤولة عن إنتاج ومضات أشعة كاما، فمن المسؤول إذن؟ وهل العملية لا تزال تتضمن الاندفاعات العنيفة للإلكترونات الهاربة؟ لقد ثبت في النهاية أن طريقة الاندفاعات العنيفة للإلكترونات، كما تمت صياغتها وتصويرها بواسطة “جيوريفيتش” ومعاونيه، مع أنها شديدة الطاقة لتفعل أي شيء مع سبرايتس، لكنها ليست قوية لدرجة تكفي لتوليد الإضاءات الكبيرة المرئية بواسطة المرصد RHESSI أو عن طريق التحليلات الجديدة لبيانات المرصد CGRO. كما أن الحسابات التي أجريت من قبل “وَير” قد أوضحت أن طريقة الاندفاعات الشديدة للإلكترونات العالية الطاقة جدا تستطيع إطلاق طاقة أكبر بتريليونات المرات أكثر مما نتصور. وتستطيع عمل الشيء نفسه داخل سحابة رعدية، والمذهل أن هذه الطريقة تتضمن وبكل تأكيد إنتاج الكثير من المادة المضادة.

وإذا كان المجال الكهربائي داخل السحب الرعدية قويا بالقدر الكافي، فإن الإلكترونات الهاربة – المفترض تكونها بطريقة ما – تتسارع إلى سرعة الضوء تقريبا، فعندما تلتقي الذرات في جزيئات الهواء، فسوف تبعث أشعة جاما. وبالتبعية، فإن فوتونات أشعة جاما تستطيع التصادم بنوى الذرات لإنتاج زوج من الجزيئات: إلكترونات ومضاداتها التوائم “بوزيترونات“. فالبوزيترونات سوف تندفع أيضا، مكتسبة طاقة المجال الكهربائي. ولكن بينما تندفع الإلكترونات إلى الأعلى فإن البوزيترونات التي تحوي شحنة معاكسة سوف تندفع إلى الأسفل. وعندما تصل البوزيترونات إلى أسفل المجال الكهربائي، سوف تصطدم بذرات الهواء فتنتج منها إلكترونات جديدة تندفع إلى الأعلى مرة أخرى.

آلية الاسترجاع النسبي للتفريغ الكهربائي

 بهذه الطريقة، فإن الإلكترونات الصاعدة سوف تنتج بوزيترونات متجهة إلى الأسفل والتي بالتبعية سوف تنتج إلكترونات أكثر صعودا إلى الأعلى وهكذا. وإذا كان اندفاع واحد للإلكترونات يؤدي إلى إنتاج العديد منها، فإن التفريغ الكهربائي سوف ينتشر سريعا فوق مساحة واسعة للسحابة الرعدية، تصل في اتساعها إلى أميال عديدة. والأعداد المتنبأ بها بهذا النموذج – يسمى نموذج التفريغ الكهربائي الاسترجاعي النسبي – تتلاءم تماما مع الشدة والفترة الزمنية وطيف الطاقة لأشعة جاما، كما جرى رصدها بالمرصدين CGRO و RHESSI.

يشبه الاسترجاع  الإيجابي من البوزيترونات الصوت المزعج الذي نحصل عليه عند الإمساك بالميكروفون من فوق سماعة. وهذا المنطق هو وراء تفسير آخر محتمل وإن لم يجر التحقق منه رياضياتيا بشكل كامل بعد، وهو أن هذه الومضات من أشعة جاما هى النسخة الأكثر طاقة من أشعة إكس المنبعثة بواسطة البرق عند اقترابه من الأرض.

لسنوات عديدة، قام الباحثون في معهد فلوريدا ومعهد نيومكسيكو للتعدين والتقانة بقياس أشعة إكس هذه، سواء تلك الناتجة من البرق الذي ينبعث صناعيًا من إطلاق الصواريخ أو من البرق الطبيعي الذي يضرب الأرض. وقد أوضحت أفلام أشعة إكس من كاميرا أشعة إكس السريعة في ولاية فلوريدا أن الانفجارات تنبثق من قمة قناة البرق خلال سريانها من السحب إلى الأرض. ويعتقد معظم العلماء أن أشعة إكس تتولد عن طريق الإلكترونات الهاربة، المعجلة بواسطة المجالات الكهربائية القوية أمام البرق. وربما لأسباب لم تعرف بعد، فإن البرق الذي يتحرك في المجال الكهربائي داخل السحب الرعدية يقوم بوظيفة أفضل لإنتاج هذه الإلكترونات الهاربة. إذا صحت هذه الفكرة، فإن الومضات المرصودة من سفينة فضاء على بعد مئات الأميال ربما تكون مجرد نوع – مكبر ببعض الطرق غير المعروفة بعد – من أشعة إكس المتولدة من البرق والتي جري رؤيتها على الأرض بواسطة مجسات على بعد مئات الأقدام من الصاعقة.

اكتشاف من الصحراء الكبري علي حين غرة

مع نهاية عام 2005 كان “سميث” ومعاونوه واثقين من أن معظم ومضات أشعه جاما الأرضية تنشأ من داخل أو قريبا من أعالي السحب الرعدية، بغض النظر عما إذا كانت المادة المضادة أو سهام البرق المقوى متضمنة معها. وقبل أن يتقبلوا هذا الطرح بشغف، ظهر شيء وضع فهمهم محل تساؤل من جديد. إذ أن إحدى الظواهر المرصودة من المرصد RHESSI كانت دويا شديدا في وسط الصحراء الكبرى في أواسط إفريقيا Sahara Desert في يوم مشمس ومن دون سحب رعدية في المشهد!

قضي “سميث” وطلبته شهورا يناضلون على تفسير هذا الحدث. تشكلت السحب الرعدية هذا اليوم بالفعل، ولكن ليس في المكان الذي كانت تبحث فيه السفينة الفضائية. كانت السحب الرعدية على بعد آلاف الأميال إلى الجنوب، على الأفق من المرصد RHESSI. ولكن يجب أن تسير أشعة جاما لهذه السحب كجميع أشكال الضوء في خط مستقيم، لكنها لم تصل إلى السفينة الفضائية.

ومن ناحية أخرى، يجب أن تسير الجسيمات المشحونة مثل الإلكترونات طبيعيا في مسارات منحنية ملتفة حلزونيا حول الخطوط المنحنية للمجال المغنطيسي للأرض. وقد كانت العواصف الرعدية موجودة تماما على الطرف الآخر لخط المجال المغنطيسي المار بالسفينة الفضائية، وتستطيع الإلكترونات التي وصلت إلى ارتفاعات عالية جدا السير حول الكوكب والاصطدام في مجسات المرصد RHESSI، مكونة في هذه العملية أشعة جاما. ومع ذلك،  يبدو من المستحيل على الإلكترونات المتحررة داخل سحابة رعدية عمل ذلك خلال الكثير من الأميال في الغلاف الجوي إلى هذا الارتفاع في الفضاء حيث تسير حول خطوط المجال. وقد بدت تلك الملاحظة الجديدة بأنها تحتاج إلى مصدر عالي الارتفاع.

تيليسكوب فيرمي

وفي عام 2011 لاحظ تليسكوب فيرمي FERMI الفضائي لأشعة جاما العديد من هذه الأشعة التي تدور حول الكوكب محققا بذلك اكتشافا مذهلا، وهو أن جزءا كبيرا من الأشعة يتكون من بوزيترونات. وهكذا فإنه يبدو أن الظواهر الجوية لا تستطيع فقط إطلاق إلكترونات وأشعة جاما إلى الفضاء وإنما أيضا جزيئات المادة المضادة. وبإدراك متأخر، كان يجب أن يُتوقع رؤية هذه البوزيترونات نظرا لمدى طاقة أشعة جاما. ومع ذلك إذا أخذنا بعين الاعتبار كم هو غريب ملاحظة المادة المضادة في الطبيعة، فإن ما اكتشفه تليسكوب فيرمي كان مذهلا. [5]

إن تفسير مشاهدات الصحراء الكبرى، الذي أدركه فريق “سميث” عاجلا، لم يكن أن أشعة جاما قد جاءت من ارتفاع عال، وإنما على الأرجح أنها نتجت داخل السحب الرعدية بأعداد هائلة أكثر مما كان متوقعا. واصطدم البعض المتجه منها إلى الفضاء بجزيئات الهواء العَرَضية على ارتفاع يتجاوز الـ25 ميلا تقريبا منتجة أزواجا  ثانوية من الإلكترونات والبوزيترونات التي تركب عندئذ خطوط المجال المغنطيسي حول الأرض. وفي المرة القادمة عندما ترى سحابة رعدية طويلة، توقف لتتذكر أنها قادرة على أن تطلق إلى الفضاء جزيئات عالية الطاقة يمكن كشفها على الجانب الآخر من الكوكب.

الطيران مباشرة داخل السحب الرعدية

 إن الحسابات الأولية توضح أنه إذا ما حدث أن اصطدمت رحلة خطوط طيران مباشرة بإلكترونات عالية الطاقة وأشعة جاما داخل عاصفة رعدية، فإن الركاب وأعضاء طاقم الطائرة – من دون الشعور بأي شيء – من الممكن أن يتلقوا جرعة إشعاعية في جزء من الثانية تصل إلى الجرعة الإشعاعية الطبيعية التي يمكن أن يتعرض لها المرء طوال حياته. لكن من الأخبار الحسنة أننا لا نحتاج إلى تحذير الطيارين للبقاء بعيدا عن العواصف الرعدية، لأنهم يفعلون ذلك بالفعل. فالعواصف الرعدية هي أماكن يكون الوجود فيها شديد الخطورة سواءًا في وجود أشعة جاما أو غيابها.

إلى حد ما، استكملت دراسة ومضات أشعة جاما الأرضية عمل “بنجامين فرانكلين”، الذي يزعم أنه أرسل طائرة ورقية إلى سحابة رعدية لرؤية مدى إمكانية توصيلها للكهرباء. ومن ثم أوضح فرانكلين منذ قرون أن البرق هو عبارة عن تفريغ كهربائي، والمفاجأة أنه وبعد قرنين ونصف من تجربته للطائرة الورقية، لا يزال لدى العلماء فهم غير كامل، ليس فقط حول كيفية تكوّن ومضات أشعة جاما بواسطة السحب الرعدية بل وحتى تكون البرق البسيط.

المصادر

1- GAMMA Rays

2-Sprite (Lightning)

3-Discovery of Intense Gamma-Ray Flashes of Atmospheric Origin

4-Runaway Breakdown and the Mysteries of Lightning

5-Electron-Positron beams from terrestrial lightning observed with Fermi GBM

6-Thunderclouds Make Gamma Rays—and Shoot Out Antimatter, Too

Show affiliations

كيف استخدمت الموصلية الفائقة في صناعة المجسات الفوتونية ؟

تعمل عيوننا كمجسات للضوء شديدة الحساسية، حيث تعينان شدة الأشعة الساقطة عليهما ولونها وانتشارها في الفضاء. وتمتلك شبكية العين البشرية من (البكسلات) أكثر مما تمتلكه آلة تصوير رقمية. ففي الشبكية نحو ستة ملايين من الخلايا المخروطية التي تتحسس باللون وأكثر من 100 مليون من الخلايا الأسطوانية المسؤولة عن الرؤيا في الظلام. والعيون حساسة جداً، حيث أن خلية واحدة أسطوانية معتادة على الظلام يمكن أن تطلق إشارة إلي الدماغ عند امتصاصها جسيما واحداً من جسيمات الضوء (فوتوناً). والفوتون هو أصغر وحدة كمومية من موجة كهرومغناطيسية. وتلزم ست فقط من إشارات الفوتون الواحد لكي يري الدماغ ومضة. لكن العيون وآلات التصوير التجارية بعيدة عن أن تكون مثالية للعديد من المهمات. لأنها لا تستطيع أن تكشف سوى تلك الفوتونات التي تقع تردداتها في المدي المرئي الضيق. وأكثر من ذلك فإن قدراتها اللونية لا تتضمن قياس التردد المضبوط  لكل فوتون. ومن هنا أتى احتياجنا الكبير لمجسات فوتونية علمية وصناعية قادرة على كشف المجالات الكهرومغناطيسية التي تقع خارج مدي الضوء المرئي. نريد مجسات فوتونية قادرة على التقاط عوالم الأشعة تحت الحمراء والموجات الميكروية، حيث الترددات منخفضة (الأطوال الموجية طويلة، والطاقة منخفضة).

يفتقر العلماء بصورة خاصة، بالنسبة إلي الأطوال الموجية المرئية والأطول منها، إلي أجهزة قادرة علي رؤية فوتون منفرد وعلي تمييز تردده، ومن ثم طاقته بأي دقة كانت. حيث إن تعيين تردد الفوتونات يفتح الباب أمام ثروة من المعلومات حول المادة المصدرة لهذه الفوتونات. إن كشف الفوتونات بابتكار مجسات أساسها الموصلية الفائقة، بإمكانها القيام بمثل تلك القياسات الدقيقة وبأمور أخرى غير عادية. إذ أن هذه الأدوات الجديدة تحسن حساسية القياسات على مدى الطيف الكهرومغناطيسي من الموجات الراديوية إلي الضوء المرئي إلي أشعة جاما تحسينا مذهلا.

هشاشة الموصلات الفائقة ودورها في صناعة مجسات فوتونية

من الغريب أن تكون خاصية التوصيلية الفائقة التي نتج عن استخدامها في تطبيقات مثل نقل القدرة الكهربائية، هي بالضبط الميزة التي احتاجها العلماء لصناعة مجسات للفوتونات. فالموصلية الفائقة التي هي سريان التيار الكهربي من دون مقاومة، وتنشأ حين ترتبط الإلكترونات فى مادة مناسبة بعضها ببعض لتشكل ما يسمي أزواج كوبر Cooper pairs.

تسري أزواج كوبر عندئذ كمائع فائق. وهناك تأثير ميكانيكي كمومي مفاده أن الموصلية الفائقة لا تحدث فى المادة إلا حين تُبَرد هذه المادة إلي درجة حرارة منخفضة جداً، وتدعي حرارة التحول الحرجة لتلك المادة. وتبريد المادة ينقص اهتزاز ذراتها. فإذا ارتفعت درجة الحرارة فوق حرارة العتبة (Threshold)، أبعدت الطاقة الحرارية للتصادمات الإهتزازية الإلكترونين الشريكين في أزواج كوبر أحدهما عن الآخر. وأزالت بذلك الموصلية الفائقة. وبسبب هذه الحساسية للحرارة لا بد من تبريد العديد من الموصلات الفائقة إلي درجات قليلة فقط فوق الصفر المطلق ( درجة 0 كلفن تساوي 273.15-). وتحتاج بعض الأنواع إلي درجات حرارة منخفضة لا تتجاوز أجزاء قليلة من المئة من الكلفن.

هشاشة مفيدة

ولكن هشاشة الموصلية الفائقة بحد ذاتها هي الصفة التي تجعلها مناسبة بصورة مثالية للاستخدام فى المجسات الحساسة. وتعتمد مجسات الفوتونات فائقة الموصلية علي مقدرة طاقة فوتون منفرد علي تمزيق الآلاف من أزواج كوبر. عندئذ يمكن قياس التغير في حالة الموصلية الفائقة بعدة طرق بهدف الكشف عن الطاقة التي أعطاها الفوتون أي لصناعة المجسات الفوتونية. ولما كانت طاقة الفوتون متناسبة مع تردده، فإن هذا القياس يدل علي تردد الفوتون. وهذا هو المفتاح للحصول على معلومات عن الجسم الذي أتى الفوتون منه. [1]

تعمل المجسات شبه الموصلة العاملة عند درجة الحرارة العادية، مثل الأجهزة ذات الشحنات المقترنة Charged-coupled devices الموجودة في آلة تصوير رقمية، بواسطة تشويش حالة كمومية في المادة. ففي حالة الجهاز CCD، يصدم فوتون الضوء المرئي إلكترونا فيخرجه من نطاق طاقة في بلورة شبه موصلة. ولكن الإلكترونات مرتبطة ارتباطا قويا فى هذه النطاقات، لدرجة أن كل فوتون لا يحرر عادة سوي إلكترونا واحد. وهذا التحرير قليل جداً لدرجة أنه لا يكفي لتحديد تردد الفوتون. ونتيجة لذلك لا يستطيع الجهاز CCD تعيين لون الفوتون مباشرة. أما الآلات الرقمية فتشكل صوراً ملونة باستخدامها مجموعة مرشحات، أحدهما أحمر والآخر أخضر والثالث أزرق، ولا تمرر سوى الفوتونات التي تقع تردداتها في هذه المجالات. وعلي النقيض من ذلك، فإن بإمكان فوتون مرئي واحد فصل الآلاف من أزواج كوبر فى الموصل الفائق. ويتيح تكوين آلاف الإثارات قياس الطاقة قياسا دقيقا.

أنواع المجسات الفوتونية فائقة التوصيل

تصنف المجسات التي تعمل علي تحسس تمزق الموصلية الفائقة فى صنفين رئيسيين. النوع الحراري الذي يبرد حتي درجة حرارته الانتقالية بالضبط، وعندها لا يكون إلا جزئيا في حالة الموصلية الفائقة وتكون الإثارات الحرارية علي وشك أن تخرب الموصلية الفائقة كليا. وأي طاقة تُودَع فى الموصل الفائق ترفع درجة حرارته وتسبب ارتفاع مقاومته الكهربائية ارتفاعا ملموسا. أما النوع الأخر، المجسات الفاصلة للأزواج Pair-breaking فهو علي العكس من ذلك، إذ يُبَرد إلى درجة حرارة أخفض من درجة حرارة الانتقال ويكون فى حالة الموصلية الفائقة كليا. ويقيس هذا المجس عدد أزواج كوبر التي تحطمت عند إيداع الطاقة فيه.[2]

المجسات ذات الحافة الانتقالية (TES)

يعتمد النوع الحراري من المجسات الفوتونية علي حقيقة أن المقاومة الكهربائية للموصل الفائق ترتفع بشكل حاد من الصفر إلي قيمتها الاعتيادية فى المدى الضيق جداً من درجة الحرارة الذي تتحول فيه المادة من حالتها فائقة الموصلية إلي حالتها العادية. ويتيح التغير الفجائي فى المقاومة للموصل الفائق أن يعمل عمل ميزان حرارة بالغ الحساسية. ويدعي المجس الذي يستخدم الانتقال الطوري الفائق الموصلية بهذه الطريقة مجساً ذا حافة انتقالية Transition-edge sensor. وحين يمتص المجس TES فوتوناً، تتحول طاقة الفوتون إلي طاقة حرارية ترفع درجة الحرارة ومن ثم تزيد مقاومة المادة بصورة متناسبة مع الطاقة المودعة. ويمكن تبعا للمادة التي تمتص الفوتونات، أن يٌستخدم المجس TES مثل مقياس طيف لقياس طاقة الأشعة السينية وأشعة جاما أو مثل عداد فوتونات عند الأطوال الموجية تحت الحمراء أو حتى المرئية.[3]

تم تطوير أوائل المجسات TES فى الأربعينيات لكنها لم تكن عملية. وكانت المشكلة في أن مدى الانتقال إلي الموصلية الفائقة غالبا ما يكون أقل من جزء من ألف من الدرجة. ولذلك كان من الصعب إبقاء درجة حرارة الجهاز ضمن هذا المدى. وفى عام 1993، تم اكتشاف حيلة بسيطة أمكنت من حل هذه المشكلة. وهي تطبيق جهد كهربي ثابت، وهي تقنية تدعى انحياز الفلطية Voltage biasing. يؤدي الجهد المطبق إلي مرور تيار كهربي عبر المجس TES، وهو ما يرفع درجة حرارته للتسخين. وعند ارتفاع درجة حرارة الانتقال ترتفع المقاومة، و ينقص التيار الكهربي ويتوقف التسخين. وهكذا يعمل التسخين الذاتي ارتجاع Feedback سالب، فيبقي درجة حرارة الغشاء ضمن مجاله الانتقالي. كما أن الارتجاع السلبي يسرع استجابة المجسات. وقد أدي إدخال انحياز الفلطية إلي نمو هائل فى تطوير المجسات الفوتونية TES فى العالم كله.

مجسات الوصلة النفقية فائقة الموصلية Superconducting tunnel junctions

لا يمكن للمجسات الفاصلة لأزواج كوبر أن تعتمد علي التغير فى المقاومة الكهربائية لكي تعطي إشارة امتصاص فوتون. فبخلاف المجس الحراري، يحطم الفوتون الوارد أزواج كوبر ويُكَوِن أشباه جسيمات يمكن اعتبارها بمثابة إلكترونات حرة فى مادة أخري فائقة الموصلية. ويكون عدد أشباه الجسيمات الناتجة متناسبةً مع طاقة الفوتون. ولكن لما كان المجس مبرداً إلي ما دون درجة حرارته الانتقالية بكثير، فلا يزال ثمة بحر من أزواج كوبر السليمة. ولذا تبقي المقاومة الكهربية معدومة. وينبغي أن يحتفظ المجس الفاصل للأزواج بقدرته علي التمييز بين أزواج كوبر وأشباه الجسيمات.

إن أحد الأجهزة القادرة علي القيام بتلك المهمة هو الوصلة النفقية الفائقة الموصلية Superconducting tunnel junctions، المؤلفة من غشائين فائقي الموصلية تفصلهما طبقة رقيقة من مادة عازلة. فإذا كان العازل رقيقا لدرجة كافية (نحو 2 نانومتر)، أمكن للإلكترونات أن تعبر من أحد جانبي الحاجز إلي الجانب الآخر بواسطة خاصية تعرف بالعبور النفقي الكمومي quantum-mechanical tunneling. ويؤدي تطبيق مجال مغناطيسي صغير إلي منع أزواج كوبر من العبور النفقي عبر الوصلة فلا يستطيع العبور إلا أشباه الجسيمات. بعد ذلك يمكن تطبيق جهد كهربي علي الجهاز، فلا يمر تيار إلا حين يمتص أحد الغشائين فائقي التوصيلية فوتوناً يولِد أشباه جسيمات. وتكون نبضة التيار الناتجة متناسبة مع عدد أشباه الجسيمات المستحدثة وإذاً مع طاقة الفوتون وتردده.[4][5]

تطبيقات المجسات فائقة الموصلية

إن المجسات فائقة الموصلية المتاحة اليوم أكثر حساسية 100 إلي 1000 مرة من المجسات العادية التي تعمل عند درجة حرارة الغرفة. وهذه الأجهزة تحسن القياسات فى مدي واسع من المجالات.

منع انتشار الأسلحة النووية والدفاع الوطني

إن إحدي الأولويات الدولية هي مراقبة انتشار المواد النووية التي يمكن أن تستخدم فى هجوم يقوم بيه إرهابيون. وتحتوي المواد النووية على نظائر غير مستقرة تصدر أشعة السينية وأشعة جاما. وتوفر الطاقات المميزة لهذه الفوتونات بصمة تكشف عن ماهية تلك النظائر الموجودة. ولكن لسوء الحظ تصدر بعض النظائر الموجودة فى تطبيقات شرعية وعادية هي الأخرى أشعة جاما ذات طاقات شبيهة بتلك التي تصدرها مواد تستخدم في الأسلحة النووية. وهذا يؤدي إلى تحديد ملتبس وتحذيرات مزيفة. فعلى سبيل المثال، تتمثل الطاقة المميزة لليورانيوم العالي التخصيب فى أشعة جاما ذات طاقة 185.7 كيلو إلكترون فولت الصادرة من يورانيوم 235. لكن أشعة جاما هذه لها نفس الطاقة تقريبا التي تصدر عن الراديوم 226 الموجودة فى الطين فى الحاويات المخصصة للقطط وفى مواد أخري. وهذا يجعل التمييز بين الاثنتين صعبا جدا.

وقد تم تطوير مجسات من قبل مختبر لوس ألاموس الوطني لأشعة جاما مبنية علي أساس تقانة TES وتتمتع بقدرة تمييز طاقية تفوق أكثر من عشر مرات تلك التي للمجسات العادية. إذ تستطيع تلك المجسات فصل عدد أكبر من الخطوط فى أطياف أشعة جاما المعقدة للمواد النووية. وتستطيع التفريق بين اليورانيوم والراديوم والقضاء علي التحذيرات الزائفة.

الكوسمولوجيا (علم الكون)

في السنوات الأخيرة، أتت بعض أهم الاكتشافات حول فهمنا للكون من قياس اشعاع الخلفية الكونية من الموجات الميكروية Cosmic microwave background (CMB). فالفوتونات فى الخلفية الكونية هي صورة لحظية للكون بعد نحو 400000 سنة من الانفجار الأعظم. وهذا بسبب مرور معظم الفوتونات عبر الكون أثناء ال 13 بليون سنة الماضية من دون أي تغير، وأحدثت الموجات الصوتية في بلازما الكون المبكر نماذج إشعاع خلفية CMB يراها الفلكيون اليوم. وقد أظهرت قياسات تلك النماذج، أن 5% من الكون الحالي فقط يتألف من المادة والطاقة العاديتين المألوفتين بالنسبة لنا. وأن نحو 22% هي مادة خفية Dark matter و73% هي حقل غامض يعرف بالطاقة الخفية Dark energy. وقد ساعدت المجسات فائقة الموصلية العلماء علي الوصول إلي طاقات لا يمكن الوصول إليها أبدا بالتجارب الأرضية.

صارت المجسات الفائقة بالإضافة إلي ما تم ذكره من تطبيقات، تستخدم أيضا فى السنكروترونات للتحليل الكيميائي للمعادن في البروتينات وفي عينات أخري. كما ساعدت أيضًا في الكشف الفعال عن بوليمرات بيولوجية كبيرة من شظايا ال DNA، واكتشاف الأدوية وتحليل المركبات الطبيعية. بالإضافة إلي عد الفوتونات عند أطوال موجية تحت الحمراء، المستخدم في الاتصالات.

المصادر

1- Low Temperature particle detectors|
2-Superconducting nanowire single-photon detector
3-Transition-edge sensor
4-Quantum Tunneling
5-Superconducting tunnel junction

المسرع الخطي LCLS للأشعة السينية، من فكرة سلاح نظري لميكروسكوب لا سابق له

ظلت ليزرات الأشعة السينية مدة طويلة مادة خصبة للخيال العلمي. ولم يبدأ أول جهاز منها بالعمل لغرض علمي إلا قبل اثني عشرة سنة، وذلك في جامعة ستانفورد باعتبارها مرفقا تابعا لمكتب العلوم في وزارة الطاقة الأمريكية. ويستمد هذا الجهاز، المعروف باسم منبع الضوء المترابط للمسرع الخطي (LCLS) طاقته من أطول مسرع جسيمات خطي في العالم، في مختبر المسرع الوطني SLAC. وقدي جري بواسطته تكوين حالات غريبة للمادة لم تحصل في أي مكان أخر من الكون، وذلك بتعريض الذرات والجزيئات والجوامد لنبضات أشعة سينية ذات شدة عالية. فماهو هذا الجهاز؟ وما هي خصائصه؟

ألية عمل الأشعة السينية

إذا وضعنا ذرة أو جزيئا أو حبيبة غبار في وجه أقوى ليزر للأشعة السينية في العالم، فإنه لن يكون أمامها أي فرصة للنجاة. إذ تصل درجة حرارة تلك المادة المضاءة بالليزر إلى أعلى من مليون “كلفن” كما في حالة الشمس. وذلك في غضون أقل من جزء واحد من تريليون جزء من الثانية. وعلى سبيل المثال، تفقد ذرات النيون الخاضعة لمثل هذه الظروف الاستثنائية جميع إلكتروناتها العشرة سريعا وبمجرد خسارتها لغلافها الإلكتروني الواقي تنفجر مبتعدة عن الذرات المجاورة. ويمثل مسار حطامها مشهدا فاتنا جدا للفيزيائيين.

إن ما يجعل هذه العملية مدهشة هو أن ضوء الليزر يطرد إلكترونات الذرة من الداخل إلى الخارج. لكن الإلكترونات, التي تحيط بنواة الذرة على شكل طبقات مدارية شبيهة بطبقات البصل، لا تتفاعل جميعا بتجانس مع حزمة الأشعة السينية. لأن الطبقات الخارجية شفافة تقريبا لهذه الأشعة. ولذا فإن الطبقة الداخلية هي التي تقع تحت وطأة الإشعاع، تماما كما تسخْن القهوة في الفنجان الموضوع في فرن موجات ميكروية قبل الفنجان بمدة طويلة_ كما يتضح فى الشكل المقابل. فإن الأشعة السينية تقوم بطرد إلكترونات المدار الداخلي K _. وينطلق الإلكترونان الموجودان في تلك الطبقة إلى الخارج مخلفين وراءهما حيزا فارغا فتغدو الذرة جوفاء. وخلال بضع فيمتوثوان، تمتص إلكترونات أخرى إلى الداخل لتحل محل الإلكترونات المفقودة. وتتكرر دورة تكوين التجويف الداخلي وملء الفراغ حتى لا يتبقى أي إلكترون حول الذرة. وتحدث هذه العملية في الجزيئات وفي المادة الصلبة أيضا.[1]

لكن تلك الحالة الغريبة لا تدوم إلا بضع فيمتوثوان.  وفي الجوامد، تتفكك المادة إلى حالة متأينة, أي إلى بلازما كثيفة وساخنة لا توجد عادة إلا في ظروف استثنائية من مثل تفاعلات الاندماج النووي أو في مراكز الكواكب الضخمة. وعلى كوكب الأرض لا مثيل للحالة المتطرفة الخاطفة التي تنشأ عند تفاعل الذرة مع حزمة ليزر الاشعة السينية.

إحياء المسرع الخطي LCLS وفتح أفاق جديدة

 في الواقع استمد أول ليزر أشعة سينية طاقته من اختبار لقنبلة نووية تحت الأرض. فقد صنع ذلك الليزر من أجل مشروع سري اسمه إكسكاليبر Excalibur. ونفذه مختبر <لورنس ليفرمور> القومي. وكان ذلك الجهاز واحد من مكونات مبادرة الدفاع الاستراتيجي التي أطلقها الرئيس الأمريكي الأسبق <رونالد ريكان> والمسماة بحرب النجوم في ثمانينات القرن الماضي. حيث كان الغرض منها أن تعمل على إسقاط الصواريخ والأقمار الصناعية.[2]

إن الليزر المعروف بمنبع الضوء المترابط في المسرّع الخطي(LCLS) الموجود في مركز مسرّع ستانفورد الخطي (SLAC). يوقظ ذكريات منظومات “حرب‏ النجوم” المضادة للصواريخ تلك.[3] فقد قامت جامعة ستانفورد ببنائه كأطول مسرع إلكترونات في العالم. ويبلغ طول ذلك المسرع ثلاثة كيلومترات، ويبدو من الفضاء كإبرة موجهة إلي قلب الحرم الجامعي. إن ذلك المسرع الخطي مدين في نشأته للعديد من الإكتشافات وجوائز نوبل التى أبقت الولايات المتحدة فى طليعة فيزياء الجسيمات الأولية طوال عقود من الزمن. ومنذ إعادة إناطة مهام جديدة في الشهر 2009/10. غدت بالنسبة إلى فيزياء الذرة والبلازما والكيمياء وفيزياء المادة الكثيفة وعلم الأحياء، ما يمثله المصادم الهادروني الكبير (LHC). ويمكن لنبضات الأشعة السينية لمنبع الضوء المترابط LCLS أن تكون بالغة القصر ( بضع فيمتوثوان) إلي حد أنها تجعل الذرات تبدو جامدة. وهذا ما يمكن الفيزيائيين من رؤية التفاعلات الكيميائية أثناء حدوثها. وتلك النبضات شديدة السطوع أيضا، ولذا تسمح بتصوير البروتينات والجزيئات الحيوية الأخرى التي كانت دراستها شديدة الصعوبة.

ظلال الذرات وتصوير المسافات الضئيلة

يدمج ليزر الأشعة السينية أداتين من الأدوات الرئيسية التي يستعملها فيزيائيون اليوم التجريبيون. وهما منابع ضوء السنكروترونات Synchrotrons والليزرات الفائقة السرعة Ultrafast Lasers. أما السنكروترونات، فهي مسرعات مضمارية الشكل تدور الإلكترونات ضمنها وتصدر أشعة سينية تلج أجهزة قياس موضوعة حول محيط الآلة على هيئة دولاب ذي قضبان منبثقة من مركزه. وتستعمل أشعة السنكروترون السينية لدراسة أعماق الذرات والجزيئات والنُظم النانوية. فضوء الأشعة السينية مثالي لهذا الغرض، لأن أطوال موجاته من مقاس الذرة. [4] ولذا تولد الذرات ظلالا ضمن حزمة الاشعة السينية. وإضافة إلى ذلك، يمكن تعديل الأشعة السينية بحيث ترى أنواعا معينة من الذرات. كذرات الحديد فقط مثلا، وتبين مكان تموضعها ضمن الجسم الصلب أو ضمن جزيء كبير كجزيئات الهيمو جلويين (الحديد هو المسؤول عن اللون الآحمر للدم).

لكن ما تعجز عنه الأشعة السينية هو اقتفاء أثر الحركة الذرية ضمن الجزيء أو الجسم الصلب. فكل ما نراه حينئذ هو غشاوة باهتة. لأن النبضات ليست قصيرة ولا ساطعة بقدر كاف. ولا يمكن للسنكروترون تصوير الجزيئات إلا إذا كانت مصطفة على هيئة بلورات، حيث تقوم قوى موضعية بإبقاء الملايين منها في صفوف منتظمة.

وفيما يخص الليزرات، فإن ضوءها أشد سطوعا بكثير من الضوء العادي لأنه ضوء مترابط. إن الحقل الكهرومغناطيسي في الليزر ليس متموجا كسطح البحر الهائج، بل يهتز بنعومة وانتظام متحكم فيهما. ويعني الترابط ان الليزرات تستطيع تركيز طاقة هائلة ضمن بقعة صغيرة. وأنه يمكن إشعالها وإطفاؤها في برهة قصيرة من رتبة الفيمتوثانية.

التباين بين الأشعة السينية والليزرات العادية

وتعمل الليزرات العادية عند أطوال موجات الضوء المرئي والضوء القريب منه. وتلك أطوال أكبر بألف مرة من أطوال الموجات الضرورية لتمييز الذرات إفراديا. وعلى غرار رادار الطقس الذي يستطيع رؤية عاصفة مطرية دون تمييز قطرات المطر،  فإن الليزرات العادية تستطيع رؤية مجموعة متحركة من الذرات دون تمييزها إفراديا. فمن أجل تكوين ظل حاد للجسم المرصود يجب أن يكون طول موجة الضوء صغيرا ومن رتبة مقاس ذلك الجسم على الأقل. ولذا نحتاج إلى ليزر أشعة سينية. وباختصار يتغلب ليزر الأشعة السينية على الصعوبات والسلبيات التي تمثلها الأدوات الشائعة لتصوير المادة عند المقاسات الشديدة الضآلة. لكن صنع جهاز من هذا النوع ليس بالمهمة السهلة.

بدت فكرة بناء ليزر أشعة سينية غريبة في وقت من الأوقات.  باعتبار أن صنع أي ليزر أمر بالغ الصعوبة بحد ذأته. فالليزرات العادية تنجح في عملها لأن الذرات تشبه البطاريات الصغيرة. فهي تمتص مقادير قليلة من الطاقة وتخزنها ثم تصدرها على شكل فوتونات، أى جسيمات ضوء. وهي تحرر طاقتها تلفائيا عادة, إلا أن <أينشتاين> كان قد اكتشف فى بداية القرن العشرين طريقة لقدح تحريرها من خلال عملية تسمى الاإصدار المحرض Simulated emission. وإذا جعلتَ الذرة تمتص مقدارا معينا من الطاقة, ثم قذفتها بفوتون يمتلك مقدارا مماثلا من الطاقة، أصدرت الذرة الطاقة الممتصة ، مولدة نسخة من الفوتون. وينطلق الفوتونان (الأصلي والمستنسخ) ليحفزا تحرير طاقة من زوج من الذرات الأخري، ويتكرر ذلك مراكما جيشا مستنسخا في تفاعل متسلسل أسي. والنتيجة هى حزم ليزرية.

لكن حتي عندما تكون الظروف ملائمة، فإن الذرات لاتستنسخ فوتونات دائما. فاحتمال إصدار ذرة معينة لفوتون عند قذفها بفوتون آخر، قليل. وثمة فرصة أكبر لها لتحرير طاقتها قبل حدوث ذلك. وتتغلب الليزرات العادية على هذه المحدودية بضخ طاقة تملأ الذرات، مع استعمال مرايا ترسل الضوء المستنسخ جيئة وذهابا ليتلتقط فوتونات جديدة.

أما في ليزر الأشعة السينية، فيغدو تحقيق كل خطوة من هذه العملية أشد صعوية بكثير. ففوتون الأشعة السينية يمكن أن يمتلك طاقة أكبر بألف مرة مما يمتلكه الفوتون المرئي. لذا على كل ذرة أن تمتص طاقة أكبر بالف مرة. ولا تحتفظ الذرات بطاقاتها مدة طويلة. إضافة إلى أنه من الصعب الحصول على مرايا عاكسة للأشعة السينية. وعلى الرغم من أن هذه العوائق ليست جوهرية، فإن ثمة حاجة إلى طاقة هائلة لتكوين الظروف الليزرية.

أجزاء المسرع الخطي وآلية عمله

يعد منبع الضوء المترابط LCLS أقرب شئ تصنعه البشرية لمدفع سفينة فضاء ليزري ويستمد هذا الجهاز طاقته من مسرع جسيمات خطي. وهو نسخة مضخمة من المدفع الإلكتروني المستعمل في جهاز التليفزيون القديم الذي يطلق إلكترونات بسرعات قريبة من سرعة الضوء والمموج هو أساس هذا الاإختراع. إذ يجعل اللكترونات تسلك مسارا منعرجا. وكلما غيرت الإلكترونات اتجاهها في، أصدرت إشعاعا يتألف في هذه الحالة من أشعة سينية. ونظرا لأن الإلكترونات تتحرك بسرعة قريبة من سرعة الأشعة السينية التي تصدرها، فإن هذه العملية تغذي نفسها وتنتج حزمة استثنائية بشدتها ونقائها.[5]

مكونات الجهاز:

  1. ليزر التشغيل: يولد ليزر التشغيل نبضات ضوء فوق بنفسجي تقتلع نبضات من الإلكترونات من المهبط.
  2. المسرع: تسرع الحقول الكهربية الإلكترونات لتصبح طاقاتها 12 بليون إلكترون فولت. ويستعمل في منبع الضوء المترابط LCLS هذا كيلو متر واحد من الطول الإجمالي للمسرع SLAC. أي ثلثه فقط.
  3. ضاغط الحزمة 1: تدخل النبضات الإلكترونية ممرا منحنيا ذا شكل “S” مخفف يقوم بتسوية نسق الإلكترونات ذات الطاقات المتباينة.
  4. ضاغط الحزمة2: بعد جولة من التسارع. تدخل النبضات ضاغطا آخر أطول من الضاغط الأول. لأن طاقة الإلكترونات الآن أكبر.
  5. ردهة النقل: تقوم المغانط هنا بتكبير أو تصغير النبضات.
  6. ردهة المموج: تسبب مجموعة مغانط ذات قطبييات متناوبة حركة متعرجة للإلكترونات، محرضة إياها علي توليد حزمة أشعة سينية ليزرية.
  7. استخلاص الجزمة: يسحب مغنطيس قوي الإلكترونات ويدع الأشعة السينية تكمل طريقها.
  8. محطة منبع الضوء التجريبية: تقوم الأشعة السينية بعملها. حيث تضرب المادة وتقوم بمهمة التصوير.

المصادر:

1- Interaction of X-ray with Atoms

2-Excalibur Project

3- LCLS Overview II SLAC

4-Synchrotron

5-The Ultimate X-ray Machine

ما يجب أن تعرفه عن فيزياء الجسيمات ، النموذج المعياري

ما يجب أن تعرفه عن فيزياء الجسيمات ، النموذج المعياري

فيزياء الجسيمات هو فرع في علم الفيزياء يندرج ضمن فيزياء الطاقة العالية، تهتم فيزياء الجسيمات بدراسة الجسيمات مادون الذرية وخصائصها والقوى التي تحكمها، كل الإكتشافات العلمية في هذا المجال تم تجميعها في نموذج موحد يعرف بالنموذج المعياري لفيزياء الجسيمات.

النموذج المعياري:

تم تطوير النموذج المعياري في بداية سبعينيات القرن العشرين بناءً على نظريات وتجارب الاف الفيزيائيين التي بدأت من ثلاثيات القرن العشرين، نجح هذا النموذج في تفسير نتائج كل تجارب فيزياء الجسيمات، كما أنه توقع نتائج بعض التجارب، يعتبر النموذج المعياري أقرب ماتوصل إليه علماء الفيزياء إلى نظرية كل شئ.
في هذا النموذج تم تقسيم الجسيمات إلى جزئين أساسيين جسيمات مكونه للمادة وجسيمات حاملة للقوى.

جسيمات المادة:

تسمى الجسيمات المكونة للمادة بالفيرميونات وتنقسم إلى نوعين «كواركات-quarks» و «لبتونات-leptons» كلا النوعين يحتوي على 6 جسيمات كل ثنائي من هذه الجسيمات ينتمي إلى «جيل-Generation»، تنتمي الجسيمات اﻷخف إلى الجيل الأول وتكون مستقرة، أما الجسيمات من الجيل الثاني والثالث تكون أثقل وتتحلل بسرعة إلى جسيمات أخف.

في حالة الكوراركات ينتمي «كوارك أعلى-Up quark» و «كوارك أسفل-Down quark» إلى الجيل اﻷول ، ينتمي «كوارك غريب-strange quark» و «كوارك ساحر-charm quark» إلى الجيل الثاني و يتتمي«كوارك قمة-Top quark» و «كوارك قاع-Buttom quark» إلى الجيل الثالث، للكواركات خاصية مهمة تعرف ب «لون-colour» ليس لونا فعليا وإنما إسم لهذه الخاصية وحسب.

في حالة اللبتونات ينتمي «إلكترون-Electron» و «نيوترينو الإلكترون-electron neutrino» إلى الجيل اﻷول ، ينتمي «ميوون-Muon» و «نيوترينو الميوون-muon neutrino» إلى الجيل الثاني وينتمي «تاو-Tau» و «نيوترينو التاو-tau neutrino» إلى الجيل الثالث، لكل من الإلكترون والميوون والتاو شحنة كهربائية وكتلة معتبرة أما النيوترينوات فهي عديمة الشحنة وذات كتلة مهملة مع العلم أن كتل النيوترينوات غير معروفة ليومنا هذا.

تنتمي المادة المضادة إلى هذا التصنيف أيضا إذ أن لكل كوارك مضادا له يحتوي شحنة معاكسة و لونا مضادا، و لكل لبتون لبتون مضاد أيضا يحتوي على شحنة معاكسه له فمثلا مضاد الالكترون يعرف بالبوزيترون له نفس خصائص الإلكترون فيما عدا الشحنة، شحنة البوزيترون موجبة وشحنة اﻹلكترون سالبة.

الجسيمات الحاملة القوى:

تتحكم في الكون أربعة قوى أساسية هي الجاذبية، الكهرومغناطيسية، القوة النووية القوية القوية والقوة النووي الضعيفة، الجاذبة والكهرومغناطيسية لديهما مدى لانهائي أي أنهما يؤثران على بعد مسافات هائلة أما القوى النووية القوية الضعيفة فيؤثران في المجال مادون الذري فقط، كما أن هذه القوى ليست متساوية إذ أن الجاذبية أضعف بكثير من بقية القوى وتأثيرها مهمل في المجال مادون الذري تأتي القوة الكهرومغناطيسية ثم القوة النووية الضعيفة ثم القوية.

ضمن النموذج المعياري القوى لاتنتقل عبر الفضاء وإنما توجد جسيمات تقوم بنقل القوى فكل القوة من القوى الأساسية لديها جسيمات خاصة بها تعرف هذه الجسيمات ب «بوزونات-Bosons»، كل من القوة الكهرومغناطيسية النووية القوية الضعيفة تتبع هذا النموذج ماعدى الجاذبية.

البوزون المسؤول عن القوة النووية القوية يعرف ب «غلوون-gluon» وهو المسؤول عن ربط الكواركات داخل نواة الذرة وتكويين البروتونات والنيترونات.
القوة النووية الضعيفة هي المسؤولة عن التحلل اﻹشعاعي كتحول البروتون إلى نيترون والعكس البوزونات المسؤولة عن هذا التصرف هما «بوزون دابليو-W boson» و «بوزون زي-Z boson» البوزونZ عديم الشحنة أما البوزون W فيوجد منه نوعاد أحدهما موجب الشحنة واﻷخر سالب الشحنة +W و -W أي أنه يوجد 3 بوزنات مسؤولة عن القوة النووية الضعيفة، القوة الكهرومغناطيسية في النموذج المعياري يتم نقلها عن طريق جسيمات عديمة الكتلة تعرف بالفوتونات

النموذج المعياري لفيزياء الجسيمات

النظريات المكونة للنموذج المعياري:

يتكون النموذج المعياري من نظريتين أساسيتين كلاهما نظريتان كموميات أي أنهما يتبعان قوانين فيزياء الكم، نظرية «quantum chromodynamics» تختصر QCD وهي نظرية كمية تشرح تفاعلات القوة النووية القوية، النظرية الثانية هي نظرية موحدة تجمع بين القوة النووية الضعيفة والكهرومغناطيسية في قوة موحدة تعرف ب «الكهروضعيفة-Electroweak force theory».

الهيغز بوزون:

في 4 يوليو 2012 تم الإعلان أن تجربتين داخل «مصادم الهدرونات الكبير-LHC” Large Hidron Collider”» بسويسرا عن إكتشاف جسيم جديد تم توقعه سابقا بنظرات مطروحة داخل النموذج المعياري سمي هذا الجسم ب «بوزون هيغز-higgs boson» نسبة إلى عالم الفيزياء بيتر هيغز أحد العلماء الذين ساهمو في تطوير النظرية التي أدت إلى إكتشافه، هذا الجسيم هو المسؤل عن التفاعلات التي تعطي الكتلة للجسيمات اﻷساسية، تم منح جائزة نوبل في الفيزياء لعام 2013 ل «فرانسوا إنجلرت-François Englert » و «بيتر هيغز-Peter Higgs» بسبب إكتشاتهم النظرية التي ساعدت على فهم الالية التي تعطي للجسيمات كتلتها مما أدى لإكتشاف الهيغز بوزون.

نقائص النموذج المعياري:

على الرغم من كل ماقدمه هذا النموذج الذي يعتبر من أهم ما أنتجه العقل البشري في سبيل سبر أغوار الكون إلى أنه مازال ناقصا إذ أنه لم يوحد القوة النووي القوية مع القوة الكهروضعيفة إذ أن هذا التوحيد سيقود إلى نظرية توحد كل قوى الموذج المعياري في نظرية واحدة «Grand Unified Theory» تشرح كل التفاعلات، لكن أكبر عائق في فيزياء الجسيمات والفيزياء عامة كان ومازال تضمين قوة الجاذبية في فيزياء الكم ﻷن نظرية النسبية العامة التي تصف قوى الجاذبية نظرية غير كمية كما أنه قد ثبت أن تكميم الجاذبية هو أصعب مشكلة في الفيزياء ولم يتم حلها لحد الان، كما أنه لايتوقع كتل الجسيمات اﻷولية ولا يتوقع وجود المادة المظلمة، أي أن اﻷمر سيتطلب نظرية أعمق لشرح كل هذا.

المصادر

Exit mobile version