مخاوف أخلاقية متصاعدة تجاه جائزة نوبل في الكيمياء 2020 وتقنية كريسبر

لم يكن الجدل حول التعديل الجيني بالجديد، ولكنه عاد للواجهة بعد تسليط نوبل الكيمياء عام 2020 الضوء على تقنية كريسبر للتعديل الجيني واكتشاف قدرتها على جعل هذا التعديل أكثر دقة وسهولة مقارنة بالتقنيات القديمة. مخاوف أخلاقية متصاعدة تجاه جائزة نوبل في الكيمياء 2020 وتقنية كريسبر .

يعتقد علماء الأخلاقيات الحيوية والباحثون عمومًا أنه لا ينبغي محاولة تعديل الجينوم البشري للأغراض الإنجابية حتى اليوم، ولكن يجب أن تستمر الدراسات التي من شأنها جعل العلاج الجيني آمنًا وفعالًا. [1،2]

يتفق معظم المهتمون بالتعديل الجيني على أهمية مواصلة المداولات العامة والنقاش للسماح للجمهور بتقرير ما إذا كان تعديل الجراثيم مسموحًا أم لا.

اعتبارًا من عام 2014، حظرت حوالي 40 دولة أبحاث تعديل جينات الخلايا الجنسية، منها 15 دولة في أوروبا الغربية بسبب المخاوف الأخلاقية والمتعلقة بالسلامة. [3]

هناك أيضًا جهد دولي بقيادة الولايات المتحدة والمملكة المتحدة والصين للتنسيق وتنظيم تطبيق تقنيات التعديل الجيني. بدأت تلك الجهود رسميًا في ديسمبر 2015 مع القمة الدولية لتعديل الجينات البشرية في واشنطن.

مخاوف السلامة

نظرًا لاحتمال حدوث تأثيرات جانبية لعمليات تعديل جيني في المكان الخطأ أو تعديل بعض الخلايا دون أخرى، فإن السلامة هي الشغل الشاغل للباحثين حاليًا.

يتفق الباحثون وعلماء الأخلاق المتخصصون ممن كتبوا وتحدثوا عن تعديل الجينوم، على أنه لا ينبغي استخدام التعديل الجيني لأغراض الإنجاب السريري حتى تثبت سلامة وأمان تعديل جينوم الخلايا الجنسية.

يُرجّح البعض فوائد التعديل الجيني على مخاطره بهدف للدفع تجاه رفع الحظر المفروض عليه، إلا أن البعض الآخر يعتقد بأنه لا يمكن تبرير المخاطر بالفائدة المحتملة.

يشكك بعض الباحثين بنبوءات التعديل الجيني للأجنة البشرية أو اعتبارها ذات فائدة أكبر من التقنيات الحالية، مثل التشخيص الجيني قبل الزرع (PGD) والتخصيب في المختبر (IVF). ومع ذلك، يقر العلماء وأخصائيي الأخلاقيات الحيوية أنه في بعض الحالات، يمكن أن يعالج تعديل الخلايا الجنسية الاحتياجات التي لا يلبيها التشخيص الوراثي قبل الزرع. [4]

مقترحات التعديل الجيني الحالية تشمل:

1. حالات تماثل كلا الأبوين المحتملين بالنسبة لمسبب للمرض (أي حمل كلاهما نسختان من جينات الإصابة، وهو ما يشير إلى إصابة جميع أطفالهم بالمرض).

2. حالات الاضطرابات متعددة الجينات التي تتأثر بأكثر من جين واحد.

3. العائلات التي تعترض على بعض عناصر عملية التشخيص الوراثي قبل الزرع. [5،6]

يشعر بعض الباحثين وأخصائيي الأخلاقيات الحيوية بالقلق من أن أي تعديل للجينوم – حتى للاستخدامات العلاجية – سيضعنا على منحدر زلق قد يقود بنا مباشرة لاستخدامه لأغراض غير علاجية وإجراء تحسينات على البشر، وهو ما يعتبره الكثيرون مثيرًا للجدل.

يجادل آخرون بوجوب السماح بتعديل الجينوم المُثبت آمانه وفعاليته لعلاج الأمراض الوراثية باعتباره واجب أخلاقي تجاه أولئك المرضى. 6 ويقترحون إدارة المخاوف بشأن التحسين والتلاعب من خلال السياسة والقوانين والتنظيم.

يشعر المعلقون على هذه القضية بالقلق أيضًا إزاء سوء استخدام تعديل الجينوم للأغراض الإنجابية وتباين القدرات الرقابية بين داخل الولايات المتحدة وخارجها، مما قد يؤدي إلى استخدامات يعتبرها البعض مرفوضة.

تستشهد هذه الحجج بالبيئات ذاتية التنظيم إلى حد كبير في العيادات الإنجابية التي تقدم التشخيص الوراثي قبل الزرع والتلقيح الصناعي، والاختلافات القائمة في اللوائح بين مختلف البلدان.

موافقة مسبقة

يشعر البعض بالقلق من استحالة الحصول على موافقة حقيقية واعية لعلاج الخلايا الجنسية لأن المرضى المتأثرين بالتعديلات هم الجنين والأجيال القادمة. ويواجه هذا الطرح بحجة مضادة تقول بأن الآباء يتخذون بالفعل العديد من القرارات التي تؤثر على أطفالهم في المستقبل، بما في ذلك القرارات المُعقّدة مثل التشخيص الوراثي قبل الزرع مع التلقيح الاصطناعي.

عبّر الباحثون وخبراء الأخلاقيات الحيوية عن قلقهم أيضًا بشأن إمكانية الحصول على موافقة واعية حقًا من الآباء المحتملين طالما أن مخاطر علاج الخلايا الجنسية غير معروفة.

العدل والإنصاف

كما هو الحال مع العديد من التقنيات الجديدة، يتزايد القلق من إتاحة تقنيات التعديل الجيني للأثرياء فقط بارتفاع أسعارها مما سيزيد التفاوتات الحالية وسيعيق الوصول إلى الرعاية الصحية المناسبة والتدخلات الأخرى.

يشعر البعض بالقلق من التفاوت المجتمعي الذي قد ينتج عن تعديل الخلايا الجنسية بجودة هندسية متباينة، مما قد يخلق معدّلين مميزين ومعدلين عاديين ومعدلين ضعفاء وهكذا.

أبحاث تعديل الجينوم الأجنة

كثير ممن لديهم اعتراضات أخلاقية ودينية يقفو في مواجهة استخدام الأجنة البشرية لإجراء المزيد من الأبحاث. مما جعل استخدام الأموال الفيدرالية في أي بحث ينتج الأجنة أو يدمرها أمر غير ممكن. بالإضافة إلى عدم قدرة المعاهد الوطنية للصحة على تمويل أي استخدام لتحرير وتعديل الجينات في الأجنة البشرية. وفقًا للوائح المعاهد الوطنية للصحة في الولايات المتحدة.

بالرغم من عدم قدرة المعاهد الوطنية للصحة على تمويل تحرير أو تعديل الجينات في الأجنة البشرية حاليًا، تعتقد العديد من مجموعات الأخلاقيات الحيوية والبحثية أن البحث باستخدام تعديل الجينات في الأجنة مهم لأسباب لا تعد ولا تحصى مثل معالجة الأسئلة العلمية حول البيولوجيا البشرية، طالما لم تُستخدم لأغراض إنجابية.

بشكل عام، يمكن استخدام بقايا أجنة قابلة أو غير قابلة للحياة باستخدام تقنيات التلقيح الاصطناعي في أبحاث الأجنة، أو أجنة تم إنشاؤها خصيصًا للبحث، ولكل حالة اعتباراتها الأخلاقية.

ما رأيك عزيزنا القارئ؟ هل تتفق أم تختلف مع لجنة نوبل عن مدى استحقاق تلك الجائزة لتقنيات التعديل الجيني بالرغم من تلك المخاوف؟

مصادر:

[1] National Academies of Sciences, E., Medicine,. (2017). Human Genome Editing: Science, Ethics, and Governance. Washington, DC: The National Academies Press.

[2] The Hinxton Group. (2015). Statement on Genome Editing Technologies and Human Germline Genetic Modification. Retrieved from http://www.hinxtongroup.org/Hinxton2015_Statement.pdf

[3] Araki, M., & Ishii, T. (2014). International regulatory landscape and integration of corrective genome editing into in vitro fertilization. Reprod Biol Endocrinol, 12, 108. doi:10.1186/1477-7827-12-108

[4] Lanphier, E., Urnov, F., Haecker, S. E., Werner, M., & Smolenski, J. (2015). Don’t edit the human germ line. Nature News, 519(7544), 410. doi:10.1038/519410a

[5] Hampton, T. (2016). Ethical and Societal Questions Loom Large as Gene Editing Moves Closer to the Clinic. JAMA, 315(6), 546-548. doi:10.1001/jama.2015.19150

[6] Savulescu, J., Pugh, J., Douglas, T., & Gyngell, C. (2015). The moral imperative to continue gene editing research on human embryos. Protein Cell, 6(7), 476-479. doi:10.1007/s13238-015-0184-y

[7] Ishii, T. (2017). Germ line genome editing in clinics: the approaches, objectives and global society. Brief Funct Genomics, 16(1), 46-56. doi:10.1093/bfgp/elv053

[8] Park, A. (2016). UK Approves First Studies Using New Gene Editing Technique. Time Health.

[9] Araki, M., & Ishii, T. (2014). International regulatory landscape and integration of corrective genome editing into in vitro fertilization. Reprod Biol Endocrinol, 12, 108. doi:10.1186/1477-7827-12-108

[10] Lanphier, E., Urnov, F., Haecker, S. E., Werner, M., & Smolenski, J. (2015). Don’t edit the human germ line. Nature News, 519(7544), 410. doi:doi:10.1038/519410a

[11] The Hinxton Group. (2015). Statement on Genome Editing Technologies and Human Germline Genetic Modification. Retrieved from http://www.hinxtongroup.org/Hinxton2015_Statement.pdf

[12] National Academies of Sciences, E., Medicine,. (2017). Human Genome Editing: Science, Ethics, and Governance. Washington, DC: The National Academies Press.

[13] Callaway, E. (2016). UK scientists gain licence to edit genes in human embryos. Nature News, 530(7588), 18. doi:doi:10.1038/nature.2016.19270

[14] Cyranoski, D., & Reardon, S. (2017). Chinese scientists genetically modify human embryos. Nature News. doi:doi:10.1038/nature.2015.17378

بطاريات الليثيوم الفائزة بجائزة نوبل الكيمياء 2019 ، كيف تعمل؟ وما أهميتها في حياتنا؟

بطاريات الليثيوم الفائزة بجائزة نوبل الكيمياء 2019 ، كيف تعمل؟ وما أهميتها في حياتنا؟

بطاريات الليثيوم الفائزة بجائزة نوبل الكيمياء 2019 حولك في كل مكان، في هاتفك النقّال وفي سيارتك وفي حاسوبك المحمول وغيرها من الأجهزة التي لا تُلزمك الإلتصاق بجانب قابس الكهرباء كي تبقى حية، في هذا المقال سنأخذكم معنا في جولة إلى عالم البطاريات وتطورها لتعرف كيف تعمل؟ وما أهميتها في حياتنا؟ وصولا إلى بطاريات الليثيوم التي كانت سببا لنيل جائزة نوبل في الكيمياء عام 2019.

بطارية الليثيوم الفائزة بجائزة نوبل الكيمياء 2019 المستخدمة في حياتنا يوميًا

مبدأ عمل البطارية بوجه عام

تحتوي البطارية على عدد من الخلايا والتي تتكون من قطبان موصولان بدارة كهربائية ويفصل بين القطبين محلول أيوني يحوي أيونات موجبة وسالبة، كما يفصل بين القطبان حاجز يمنع تكون دارة كهربائية قصيرة. تبدأ عملية الشحن بأكسدة القطب السالب والذي يعرف بـ«الأنود»، مما يؤدي إلى حركة الألكترون خلال الدارة بإتجاه القطب الموجب المسمى «كاثودا» فيختزل الإلكترون القادم من الدارة، وتعتمد فولتية البطارية على مقدار فرق الجهد بين القطبين وتتم كامل العملية بصورة لحظية أما عملية إعادة الشحن فتتم بصورة عكسية غير لحظية وتحتاج إلى مصدر كهربائي خارجي.

بدايات بطاريات الليثيوم الفائزة بجائزة نوبل الكيمياء 2019

أولى البطاريات ظهوراً هي البطارية الفولتية والتي يمثل فيها عنصر «الزنك» الأنود الذي ينتج الإلكترون للدارة، على الجهة المقابلة يقف كاثود النحاس معتمدا على الظروف المحيطة، ففي جوٍ مليء بالأكسجين يتأكسد النحاس جزئيًا إلى CuO ومن ثم يختزل إلى «النحاس» الحُر مجددًا. أما في غياب الأكسجين يُختزل البروتون الموجود في المحلول الأيوني إلى الهيدروجين على سطح النحاس وتصل فولتية البطارية ما بين 0,8 – 1,1 إعتمادًا على المحيط، كما أن هذه البطارية غير قابلة لإعادة الشحن.

بطاريات (الرصاص-الحمض) المستخدمة كبطارية ابتدائية للسيارات تتشابه إلى حدٍ كبير مع البطارية الفولتية، لكنها تختلف عنها في خاصية إعادة الشحن، نذكر أيضا بطارية «النيكل- الحديد» وبطارية «النيكل-الكادميوم» والتي تعتبر أسلافًا لبطارية «النيكل-الهيدرايد الفلزي».

الليثيوم

تم اكتشاف عنصر الليثيوم عام 1817، بعدده الذري 3، وبكثافته التي لا تتجاوز 0,53 جم/مل ويعد أخف عنصر فلزي كما أنه يمتلك جهد اختزال معياري منخفض، مما يجعله مرشحًا قويًا مناسبًا لخلايا البطاريات عالية الفولتية ومرتفعة الكثافة، وبما أنه عنصر نشط سريع التفاعل، فهو ما يستوجب حمايته وعدم تعريضه للهواء.

عنصر الليثيوم وأيونه الفائزة بجائزة نوبل الكيمياء 2019

تخلل الكاثود

نظرا لأن مرشحنا وعنصرنا النشط قد استحوذ على إعجاب العلماء حيث نصبوه أنودًا، اتجهت الأنظار وقتها لإيجاد كاثود مناسب يحقق جهد فولتي عالي، وقد وقع الإختيار على «TiS2» حيث أثبت هذا المركب قدرته على إحتواء الكترون الليثيوم. فالترتيب الصفائحي لمركب TiS2 وبينها أيونات الليثيوم، سمح لها بالتخلل، كما قدم العالم «والتر رودف-Walter Rudoff» التخلل الكيميائي في الأمونيا السائلة منتجًا «Li(0.6)/TiS2»، لكن الثورة الحقيقية كانت عندما استطاع «إم ستانلي وايتيجتون-M.Stanely Whittington» و «فريد جامبل-Fred Gamble» إيضاح أن عملية التخلل تتم ضمن الصيغة «Li(x)TiS2» حيث x أكبر من صفر وأقل أو تساوي واحد. هذه المادة كانت نظير «CdI(2)-NiAs» وأيونات الليثيوم وهذا بدوره حفز وايتنجون لإكتشاف التخلل الكهروكيميائي في هذه المواد، ومع بداية 1973 قدّم هذه المواد كأقطاب في البطاريات.

خلية بطاريات الليثيوم الفائزة بجائزة نوبل الكيمياء 2019

خلية البطارية مكونة من عنصر الليثيوم كـ أنود و«TiS2» كـ كاثود و«LiPF6» كمحلول أيوني مُذاب في «كربونات البروبيلين-Propylene carbonate» القوة المُحركة الكهربائية للخلية تقترب من 2.5 فولت وتظهر كثافة التيار الأساسي قريبة من ١٠ مترأمبير لكل سم مربع وهذا يعطينا: «(XLi + TiS(4) – → Li(x)TiS(2» ويستمر التفاعل بتخلل أيونات الليثيوم في شبكة «TiS2».

عملياً:

يتم خلط بودرة TiS2 مع «التفلون-Teflon» وترتبط مع داعم معدني مُحاط بفلز بولي بروبالين ومعدن الليثيوم. ولزيادة مرونة الدارة وحركتها بنسبة ١١٠٠ مرة أكبر، يتم غمس خليط من «تيتراهيدروفيوران-Tetrahydrofuran» و «Dimethoxyethane» يحوي على «LiClO 4».

المشكلة التي نسعى لحلها الآن هي حماية الليثيوم وتقليل تفاعله مع الجو، حيث أنه تم العثور على زوائد شجرية تكونت على سطح الخلية لها القدرة على اختراق الطبقة العازلة والوصول إلى القطب الآخر وبالتالي تكون دارة قصيرة أدت إلى انفجارات.

تكوين زوائد وشجيرات الليثيوم التي تتسبب في الدارة القصيرة

الحل أتى في نهاية عام 1979:

على يد «جون جودنوف-John B.Goodenough» وزملائه في جامعة أكسفورد الفائزون بنوبل الكيمياء 2019 وفقًا لبيان اللجنة العلمية لنوبل ، حيث وجد أن «Li(x)CoO» وهو مركب نظير «Li(x)TiS 2» من الممكن أن يعمل كـ «كاثود» لكن بدون توسع الشبكة حيث أن عنصر صغير سالب الشحنة كالأكسجين الذي سيأخذ الأيون الموجب بعملية مصحوبة بتغير أكبر في الطاقة الحرة السالبة وبفولتية أعلى كما أنه سيُتاح لأيونات الليثيوم حركة كافية في شبكات الأكسجين المغلفة المُغلقة، وقد تحقق ذلك مع فرق جهد وصل 5,4 فولت.

بطاريات الليثيوم المعتمدة على الـ LixCoO2

الثورة الثالثة في عالم البطاريات:

تمت في عام 1985 على يد مجموعة بقيادة «اكيرا يوشين- Akira Yoshin» حيث لجأ إلى مركبات الفحم البترولية المستقرة، تتكون هذه المادة من خليط كريستالي وغير كريستالي، وبإستخدام درجة كريستالية محددة ومستقرة بحيث تشكل المنطقة المحيطة حماية للجزء الكريستالي، فاستطاعت أيونات الليثيوم وبشكل متكرر التخلل في هذه المواد. طوّر يوشين بطارية الليثيوم إعتمادًا على ترتيب إنتقال الأيون في الخلية، واستخدم الكربون كـ «أنود» و«Li(x)CoO 2» ك «كاثود»، وتتألف الطبقة العازلة من البولي ايثلين أو بولي بروبولين، والمحلول الأيوني عبارة عن «LiClO 4» المُذاب في كربونات البروبولين. هذه التطورات أدت إلى إنتاج بطاريات الليثيوم تجاريا عام 1991 بفولتية تصل إلى 4.1 و بكثافة طاقة أقتربت من 200 وات لكل لتر، واتضح أن أدخال الجرافيت مع المكونات الأيونية المناسبة بدوره قد يوصل الفولتية إلى 4.2 وبطاقة تقترب من 400 وات لكل لتر.

انتقال أيون الليثيوم داخل بطاريات الليثيوم وتعديلاتها

المصادر:
بيان جائزة نوبل الكيمياء العلمي 2019

(1) Volta, A. On the Electricity Excited by the Mere Contact of Conducting Substances of Different
Kinds. Philos. Trans. Royal Soc. 1800, 90, 403–431.
(2) Planté, G. Nouvelle Pile Secondaire d’une Grande Puissance. Comptes Rendus Acad. Sci.
1860.
(3) Planté, G. The Storage of Electrical Energy: And Researches in the Effects Created by
Currents Combining Quantity with High Tension; London: Whittaker, 1887.

(4) Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium Ion, Lithium Metal, and Alternative
Rechargeable Battery Technologies: The Odyssey for High Energy Density. J. Solid State
Electrochem. 2017, 21 (7), 1939–1964.
(5) Munro, J. Pioneers of Electricity; or, Short Lives of the Great Electricians; London: The
Religious Tract Society, 1890.
(6) Sinsteden, W. J. Versuche über den Grad der Continuität und die Stärke des Stroms eines
grössern magneto-elektrischen Rotations. Ann. Phys. Chem. 1854, 92, 1–21.
(7) Gautherot, N. Sur le galvanisme. Ann. Chim. 1801, 39, 203–210.
(8) Jungner, E. W. Sätt att på elektrolytisk väg förstora ytan af sådana metaller, hvilkas
syreföreningar äro kemiskt olösliga i alkaliska lösningar. Swedish patent no. 15567, 1901.
(9) Jungner, E. W. Primärt eller sekundärt elektriskt element. Swedish patent no. 10177, 1899.
(10) Edison, T. A. Reversible Galvanic Battery. US patent no. 692,507, 1902.
(11) Arfwedson, J. A. Untersuchung einiger bei der Eisen-Grube von Utö vorkommenden Fossilien
und von einem darin gefundenen neuen feuerfesten Alkali. J. Chem. Phys. 1818, 22, 93–117.
(12) Berzelius, J. J. Ein neues mineralisches Alkali und ein neues Metall. J. Chem. Phys. 1817, 21,
44–48.
(13) Glaize, C.; Genié, S. Lithium Batteries and Other Electrochemical Storage Systems; ISTE
Ltd., 2013.
(14) Lewis, G. N.; Keyes, F. G. The Potential of the Lithium Electrode. J. Am. Chem. Soc. 1913,
35, 340–344.
(15) Harris, W. S. Electrochemical Studies in Cyclic Esters; PhD thesis, University of California,
Berkeley, 1958.
(16) Yao, Y.-F. Y.; Kummer, J. T. Ion Exchange Properties of and Rates of Ionic Diffusion in BetaAlumina. J. Inorg. Nucl. Chem. 1967, 29 (9), 2453–2475.
(17) Kummer, J. T.; Neill, W. Thermo-Electric Generator. US patent No. 3,458,356, 1969.
(18) Newman, J. Transport in Electrolytic Solutions. Adv. Electrochem. Electrochem. Eng. 1967,
5, 87–135.
(19) Whittingham, M. S. Chemistry of Intercalation Compounds: Metal Guests in Chalcogenide
Hosts. Prog. Solid State Chem. 1978, 12 (1), 41–99.
(20) Rüdorff, W. Chimia 1965, 19, 489.
(21) Bichon, J.; Danot, M.; Rouxel, J. Systematique Structurale Pour Les Series d’intercalaires
Mxtis2 (M= Li, Na, K, Rb, Cs). Comptes Rendus Acad. Sci., Ser. C, Sci. Chim. 1973, 276, 1283–
1286.

(22) Whittingham, M. S.; Gamble, F. R. The Lithium Intercalates of the Transition Metal
Dichalcogenides. Mater. Res. Bull. 1975, 10 (5), 363–371.
(23) Whittingham, M. S. Electrointercalation in Transition-Metal Disulphides. J. Chem. Soc.,
Chem. Commun. 1974, 328–329.
(24) Whittingham, M. S. Batterie à Base de Chalcogénures. Belgian patent no. 819672, 1975.
(25) Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976,
192 (4244), 1126–1127.
(26) Whittingham, M. S. History, Evolution, and Future Status of Energy Storage. Proc. IEEE
2012, 100, 1518–1534.
(27) Armand, M. B. Intercalation Electrodes. In Materials for Advanced Batteries. NATO Conf.
Ser. (VI Mater. Sci.); Murphy, D. W., Broadhead, J., Steele, B. C. H., Eds.; Springer, Boston, MA,
1980, 2, 145–161.
(28) Armand, M.; Touzain, P. Graphite Intercalation Compounds as Cathode Materials. Mater.
Sci. Eng. 1977, 31, 319–329.
(29) Rüdorff, W.; Hofmann, U. Über Graphitsalze. Z. Anorg. Allg. Chem. 1938, 238, 1–50.
(30) Schafhaeutl, C. Über die Verbindungen des Kohlenstoffes mit Silicium, Eisen und anderen
Metallen, welche die verschiedenen Gallungen von Roheisen, Stahl und Schmiedeeisen bilden. J.
Prakt. Chem. 1840, 3, 129.
(31) Fredenhagen, K.; Cadenbach, G. Die Bindung von Kalium durch Kohlenstoff. Z. Anorg. Allg.
Chem. 1926, 158, 249.
(32) Goodenough, J. B.; Mizushima, K. Fast Ion Conductors. US patent no. 4,357,215, 1982.
(33) Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0<x<-1): A New
Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980, 15 (6), 783–789.
(34) Yoshino, A.; Sanechika, K.; Nakajima, T. Secondary Battery. US patent no. 4,668,595, May
26, 1987.
(35) Yoshino, A.; Sanechika, K.; Nakajima, T. Japanese patent no. 1989293, 1985.
(36) Yoshino, A. The Birth of the Lithium-Ion Battery. Angew. Chem. Int. Ed. 2012, 51, 5798–
5800.
(37) Nishi, Y. The Development of Lithium Ion Secondary Batteries. Chem. Rec. 2001, 1, 406–
413.
(38) Fong, R.; Sacken, U. von; Dahn, J. R. Studies of Lithium Intercalation into Carbons Using
Nonaqueous Electrochemical Cells. J. Electrochem. Soc. 1990, 137 (7), 2009–2013.

(39) Peled, E. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous
Battery SystemsThe Solid Electrolyte Interphase Model. J. Electrochem. Soc. 1979, 126 (12),
2047–2051.
(40) Padhi, A. K.; Nanjundaswami, K. S.; Goodenough, J. B. Phospho-Olivines as PositiveElectrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144, 1188–
1194.
(41) Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Lithium Insertion into
Manganese Spinels. Mater. Res. Bull. 1983, 18, 461–472.

بطارية الليثيوم الفائزة بجائزة نوبل الكيمياء 2019 المستخدمة في حياتنا يوميًا

نوبل الكيمياء 2019 | من هم الفائزون وما سبب فوزهم؟

نوبل الكيمياء 2019 وبطاريات الليثيوم

قررت الأكاديمية الملكية السويدية للعلوم أن تمنح جائزة نوبل الكيمياء 2019 إلى: 

  • (جون ب. جودنوف- John B. Goodenough) 
  • (ام. ستانلي ويتنغهام- M. Stanley Whittingham)
  • (اكيرا يوشينو-Akira Yoshino)

 وذلك لتطويرهم بطاريات الليثيوم.

نبذة عن الفائزين بجائزة نوبل الكيمياء 2019

ستانلي ويتنغهام

ولد عام 1941 في بريطانيا وحصل على شهادة الدكتوراه عام 1968 من جامعة أوكسفورد، وعمل بروفيسور في جامعة بينغهامتون في الولايات المتحدة الأمريكية.

جون جودنوف

ولد عام 1922 في مدينة جينا في ألمانيا وحصل على شهادة الدكتوراه عام 1952 من جامعة شيكاغو بأمريكا، وشغل منصب رئيس كلية كوكريل الهندسية في جامعة تكساس.

اكيرا يوشينو

ولد عام 1948 في مدينة سويتو في اليابان وحصل على شهادة الدكتوراه عام 2005 من جامعة أوساكا اليابانية، كما حصل على الزمالة الفخرية من مؤسسة اساهي كاساي في طوكيو، وعمل بروفيسور في جامعة مياجو في اليابان.

بطاريات الليثيوم وسبب فوزها بجائزة نوبل الكيمياء 2019

بفضل هؤلاء العلماء تمكن العالم من صنع كل الأشياء التي يمكن إعادة شحنها، تُستخدم تلك البطاريات القوية في كل شيء بداية من الهواتف المحمولة وحتى أجهزة اللابتوب والأجهزة الكهربائية، أضف على ذلك قدرتها على تخزين كميات كبيرة من طاقة الرياح والطاقة الشمسية، جاعلةً حلم الاستغناء عن الوقود الحفري ممكناً.

دور ستانلي ويتنغهام

بدأت فكرة صنع بطاريات الليثيوم أيون أثناء أزمة الوقود في السبعينيات، سعى وقتها العالم ستانلي ويتنغهام إلى تطوير تقنيات توفر طاقة بعيدة عن الوقود الحفري. فبدأ بحثه بدراسة المواد (فائقة التوصيل-Superconductors) وأكتشف حينها مادة غنية بالطاقة استخدمها في صنع قطب كاثود مبتكر في بطارية الليثيوم، تلك المادة كانت (ثنائي كبريتيد التيتانيوم – titanium disulfide) والتي – على المستوى الجزيئي – تمتلك مسافات بينية تستطيع استيعاب أيونات الليثيوم. أما قطب الأنود فقد استخدم ستانلي معدن الليثيوم في صنعه والذي يمتلك قدرة كبيرة على فقد الإلكترونات.

وبهذا أُنتجت أول بطارية بجهد عظيم يقدر ب 2 فولت، بالرغم كون معدن الليثيوم شديد التفاعل وكون البطارية قابلة للانفجار حينها.

دور جون جودنوف

جاء بعد ذلك دور العالم جون جودنوف، الذي تنبأ بإمكانية زيادة جهد بطارية الليثيوم بمجرد تبديل ثنائي كبريتيد المعدن بأوكسيد المعدن. وبعد بحث قدمه عام 1980، توصل إلى أن استخدام قطب كاثود مصنوع من أوكسيد الكوبالت مع أيونات الليثيوم ينتج بطارية بجهد يصل إلى 4 فولت، والذي كان اكتشاف جلل وقتها، جذب انتباه جميع الأوساط العلمية.

دور اكيرا يوشينو

باستخدام قطب الكاثود الذي طوره جودنوف، قام اكيرا يوشينو عام 1985بابتكار أول نسخة من بطاريات الليثيوم الآمنة التي يمكن استخدامها تجارياً. فبدلاً من استخدام الليثيوم النشط الغير آمن في قطب الأنود، قام باستخدام (فحم الكوك- petroleum coke) وهو مادة كربونية تملك نفس خصائص قطب الكاثود من حيث قدرتها على استيعاب أيونات الليثيوم.

تضافر جهود العلماء الثلاثة

وكانت نتيجة جهود العلماء الثلاثة بطارية قوية يمكن إعادة شحنها مئات المرات قبل أن يقل أداءها، فالشيء المميز في بطاريات الليثيوم أيون أن عملها لا يعتمد على تفاعل كيميائي يقوم بتدمير الأقطاب، لكن على انسياب أيونات الليثيوم ذهاباً وأياباً بين قطبي الكاثود والأنود.

وبدخول بطارية الليثيوم السوق التجاري عام 1991، حدثت ثورة في عالمنا وانفتح الطريق أمام غزو التقنيات اللاسلكية والطاقة الغير أحفورية حياتنا.

Exit mobile version