التحليل الطيفي: كيف يمكن تحديد مكونات النجوم البعيدة؟

يطلق مصطلح «التحليل الطيفي-Spectroscopy» على دراسة الأطياف الضوئية الناتجة عن إصدار المواد للضوء أو تفاعلها معه. ورغم استخدامه في مختلف العلوم والدراسات، إلا أن دوره في الفلك يكاد يكون جوهريًا. فهو أداة رئيسة يعتمد عليها الفلكيون لمعرفة مكونات النجوم والكواكب التي تبعد عنا مليارات السنوات. فكيف يمكن ذلك؟ [1]

لفهم آلية التحليل الطيفي، لا بد من التعرف على الطيف وبعض الفيزياء أولًا.

بدايةً، ما هو الطيف؟

من المحتمل أنك رأيت «طيفًا ضوئيًا-spectrum» ولو لمرة في حياتك، فظاهرة قوس قزح، أي تحلل ضوء الشمس إلى مكوناته اللونية المختلفة نتيجة مروره في قطرات المطر، هي شكل من أشكال الطيف. أما التعريف الدقيق له، فهو أي مخطط بياني أو غرافيكي يوضح مكونات الأشعة الضوئية بحسب تدرج طاقاتها. لذلك، يمكن القول أن ألوان قوس قزح المختلفة هي الطريقة التي يدرك فيها دماغنا اختلاف طاقات الضوء التي استقبلتها أعيننا. [1]
لكن ألوان قوس قزح (الضوء المرئي) لا تشكل سوى جزء صغير من مكونات الطيف الكهرطيسي. حيث أن للأشعة الكهرطيسية طيف واسع يغطي جميع طاقاتها، بدءًا من أمواج الراديو الأقل طاقة، مرورًا بالأمواج الميكروية، وتحت الحمراء، والضوء المرئي، وفوق البنفسجية، إلى الأشعة السينية وأشعة غاما عالية الطاقة. [2]
كما يوضح المخطط التالي الطيف الكهرطيسي:

الطيف الكهرطيسي
حقوق الصورة: PASCO

الطيف المميز للمواد

يتفاعل كل عنصر في الجدول الدوري مع الضوء بشكلٍ مختلف، ويصدر في شكله الغازي ضوءًا مميزًا أيضًا. أي أن الطيف الضوئي المنبعث أو المنعكس عن الهيدروجين يختلف عن طيف النيتروجين وغيره من العناصر. لذلك، يمتلك كل عنصر بصمة لونية مختلفة يعود تفسيرها إلى «التأثير الكهرضوئي-Photoelectric effect». [1]

التأثير الكهرضوئي

توجد الإلكترونات في الذرة في «مستويات طاقية-Energy levels» محددة، ولا يمكنها الوجود خارجها. حيث توجد الإلكترونات الأعلى طاقةً في المدارات الأقرب إلى النواة، فيما تقل الطاقة بالابتعاد عنها. ولكي ينتقل إلكترون نزولًا إلى مدار أعلى طاقةً، يجب أن يزيد طاقته مقدارًا محددًا، يحصل عليه عن طريق امتصاص الضوء. والعكس صحيح، يصدر الإلكترون ضوءًا عند انتقاله إلى مستوى أخفض.
تختلف طاقة المستويات السابقة بحسب العنصر الكيميائي. وبالتالي، يمكن لكل عنصر أن يمتص طاقات محددة فقط من الضوء (ألوان)، أو يصدرها، بحسب اختلاف مستوياته الطاقية.
كما نميز نوعين من الأطياف لكل مادة، «طيف الامتصاص-Absorbtion spectrum»، و«طيف الانبعاث-Emission spectrum»: [1]

طيف الامتصاص

للحصول على طيف الامتصاص لعينة مادية ما، تُعرّض هذه العينة للضوء المنبعث من مصدر مستقل، ثم يُدرس الضوء المنعكس عن المادة ويحلل حسب أطواله الموجية. حيث تمثل الألوان الظاهرة في الطيف الأطوال الموجية التي لم تناسب طاقتها أيًا من مستويات الذرة، فلم تمتصها. أما الفراغات فتمثل الأطوال الموجية التي ناسبتها، فامتصتها الإلكترونات وانتقلت. [1]
كما يوضح المخطط التالي طيف الامتصاص لعناصر كيميائية مختلفة:

أطياف الامتصاص لعناصر كيميائية
حقوق الصورة: Hubble Space Telescope

طيف الانبعاث

يُحصل على طيف الانبعاث لمادة ما بقياس الضوء المنبعث منها في حالتها الغازية. بحيث يصدر الغاز مرتفع درجة الحرارة ضوءًا أطواله الموجية تمثل الطاقة التي فقدتها إلكترونات المادة عند انتقالها إلى مستوى أخفض. [1]

آلية التحليل الطيفي، كيف نحصل على أطياف المواد؟

يعتمد التحليل الطيفي على أداة تسمى «المطياف-Spectrograph»، تقوم بتحليل طيف الضوء للمواد إلى أطواله الموجية المختلفة، بشكل مشابه للموشور الذي يفصل ضوء الشمس إلى ألوان الطيف.
عادةً ما يلجأ العلماء لتسجيل الطيف المميز لكل مادة، وينشؤون قاعدة بيانات بالأطياف المختلفة. كما يمكن الاعتماد لاحقًا على البيانات السابقة لمعرفة مكونات الأجسام البعيدة عن الأرض، كالنجوم مثلًا، عن طريق مقارنة طيف النجم مع الأطياف الموجودة. [1]

آلية عمل المطياف، أداة التحليل الطيفي

يمكن تمييز ثلاث مراحل أساسية لعمل المطياف:
أولًا، يمر الضوء القادم من التلسكوب عبر فتحة صغيرة في صفيحة معدنية، وذلك لعزل الضوء القادم من جسم فلكي محدد عن محيطه.
ثانيًا يمر الضوء في حجرة يرتد فيها عن حواجز شبكية محددة، تقوم بفصل الضوء إلى أطواله الموجية بطريقة مشابهة للموشور. 
ثالثًا، تقوم المستشعرات، كالمستخدمة في الكاميرات الرقمية، بتسجيل الأطوال الموجية السابقة وتشكيل الصورة النهائية ثنائية الأبعاد. [1]
فيما بعد، يمكن تحويل الصورة ثنائية الأبعاد إلى مخطط أحادي الأبعاد لتسهيل دراسته واستخلاص المعلومات. [3]

مخطط احادي الأبعاد للطيف الضوئي لمجرة حلزونية S7
حقوق الصورة: COSMOS


تطبيقات التحليل الطيفي

عادةً ما يستخدم التحليل الطيفي في الكيمياء التحليلة والفيزيائية لتحديد كميات المواد الموجودة في عينة ما. أما علم الفلك فيعتمد عليها بشكل أكبر لاسيما في تحديد صفات الأجسام الفلكية البعيدة. على سبيل المثال، تفيد دراسة «الخطوط الطيفية-Spectral lines» في التمثيل أحادي الأبعاد للضوء القادم من نجم ما في تحديد مكونات النجم، ودرجة حرارته، وكثافته، ومجاله المغناطيسي.
أما إذا انزاحت الخطوط ذهابًا وإيابًا في الصور المختلفة، أي انزاحت إلى الأحمر تارةً ثم الأزرق تارةً، يستنتج العلماء أن النجم يدور حول نجم آخر اعتمادًا على «تأثير دوبلر-Doppler effect». حيث ينص تأثير دوبلر على أن طيف الأجسام المبتعدة عنا ينزاح نحو الأحمر، فيما ينزاح نحو الأزرق عند اقترابها. كما يمكن التعرف على المواد المحيطة بالثقوب السوداء والنجوم النيوترونية، بما أنها تكون مرتفعة الحرارة وتصدر ضوءًا نتيجة سقوطها في النجم بسرعة. [2]
 
ففي حين تخبرنا صور المجرات عن شكلها، يخبرنا التحليل الطيفي عن ماهيتها.

المصادر:

  1. Hubble Space Telescope
  2. NASA
  3. Swinburne university COSMOS

10 معلومات يجب أن تعرفها عن ميكانيكا الكم

أحدثت نظرية الكم ثورة حقيقية في العلم، فأزاحت الستار عن العالم الغريب القابع خلف أبسط ظواهر حياتنا اليومية وصولاً لنشأة الكون، وبين كل ذلك؛ كانت عصب الثورة الرقمية في القرن العشرين. تدرس «ميكانيكا الكم-Quantum mechanics» سلوك المادة في المستوى دون الذري. وتهدف لتحديد خصائص الذرات ومكوناتها مثل الإلكترونات والبروتونات، بالإضافة إلى تفاعلات هذه الجسيمات مع الطيف الكهرومغناطيسي. [1] إليك أهم 10 معلومات عن ميكانيكا الكم والمبادئ التي تحكم هذا العالم الغريب.

1.تكميم الطاقة

أولى المعلومات عن ميكانيكا الكم تتلخص في وجود قواسماً مشتركةً بين ميكانيك الكم وحذائك، فكما تحتاج لمقاس يناسبك، كذلك الطاقة تكون في كميات محددة أو «quantas». أصغر الكميات «ثابت بلانك-Planck constant» وما تبقى مضاعفاته.

لفهم المبدأ السابق يمكننا تطبيقه على الضوء، فالضوء يُصدر بشكل قطع منفصلة محددة تدعى «الفوتونات-Photons». وبحسب المبدأ؛ لا يمكنك صنع نصف فوتون أو 64.4 فوتونات، يمكنك فقط صناعة أعداد صحيحة منه.

إلا أن الطاقة أهم بقليل من حذائك، فقد أحدث هذا الاكتشاف ثورة في الفيزياء الحديثة على يد «ماكس بلانك-Max Planck». كما حاز ألبرت أينشتاين على جائزة نوبل في الفيزياء لإثباته ذلك عام 1921. [2]

2. الطبيعة المثنوية

في عام 1906؛ حاز «ج.ج تومسون-J.J Thomson» جائزة نوبل لاكتشافه أن الالكترونات عبارة عن جسيمات، ثم جاء ابنه جورج عام 1937 ليثبت أن الالكترونات موجات. فأيهما صحيح؟

في عالم الكم كلاهما على حق، حيث يدعى هذا المبدأ «ازدواجية موجة-جسيم-wave-particle duality» ويعد حجر الزاوية في فيزياء الكم.

كما ينطبق على الالكترونات والضوء، فأحياناً نحتاج لاعتبار الضوء طيف كهرومغناطيسي، وفي أحيان أخرى يستحسن تصوره بشكل جسيمات الفوتونات. [3]

3. يمكن للأشياء أن تكون في مكانين في الوقت ذاته

تعد ازدواجية الموجة-الجسيم مثالاً على مبدأ «التراكب-superposition»، وهو تواجد الكم أو الشيء في مكانين أو حالتين في نفس اللحظة.

مثلاً؛ يتواجد الالكترون هنا وهناك في ذات الوقت، ولكننا عندما نرصده نجبره على اختيار مكان منها.

يمكننا تخيل الالكترون كمجموعة من الاحتمالات، يمكننا تلخيصها رياضياً ب«تابع الموجة-wave function». وقيامنا بالرصد ييدمر التابع وحالة التراكب ويجبر الالكترون على اختيار حالة من ضمن الاحتمالات الممكنة.

يمهد هذا المبدأ لتجربة «قطة شرودينغر-Schrödinger’s cat»، وهي قطة محبوسة في صندوق مغلق حيث مصيرها محكوم بأداة كمية ما. وبما أن الأداة توجد بحالتين مختلفتين لحين القيام بالرصد؛ فإن القطة حية وميتة في الوقت ذاته لحين قيامنا بذلك. [4]

4. قد تقودنا ميكانيكا الكم لأكوان متعددة

تتبع الفكرة السابقة (أن عملية الرصد تهدم التابع وتجبر الكم على اختيار حالة معينة) لتفسير «كوبنهاغن-Copenhagen» لفيزياء الكم، لكن ذلك ليس التفسير الوحيد، حيث يعتقد مؤيدو فكرة العوالم المتعددة أنه لا حاجة للاختيار!

بل أنه في لحظة القيام بعملية الرصد والقياس؛ ينقسم الواقع إلى نسختين: واحدة نرصد فيها الكم وقد اختار الحالة a، والثاني حيث يختار الحالة b.

وبالتالي يتكون الواقع من العديد من الطبقات المتشابكة، وعند رؤيته على المستويات الأكبر؛ تتفكك هذه الطبقات ويبدو كل منها عالماً يشكل كوناً من الأكوان المتعددة.[5]

5. تساعدنا في تحديد صفات النجوم

بيّن الفيزيائي الدنماركي «نيلز بور-Niels Bohr» أن مدارات الالكترونات داخل الذرات مكممة أيضاً، حيث تأتي في قياسات محددة تدعى مستويات الطاقة.

عندما ينتقل إلكترون من مستوى أعلى إلى أخفض؛ يطلق فوتوناً له طاقة مساوية لفرق الطاقة بين المدارين الذين انتقلهما الإلكترون، والعكس صحيح؛ يمتص الإلكترون فوتوناً ويستعمل طاقته ليقفز إلى مستوى طاقة أعلى.

يستعمل الفلكيون هذا التأثير دائماً، فيتمكنون من معرفة مكونات النجوم عن طريق تحليل ضوئهم إلى طيف يشبه قوس قزح وتحديد الألوان المفقودة.

وبما أن المواد الكيميائية المختلفة تمتلك مستويات طاقة متباعدة بشكل مختلف؛ يمكنهم تحديد مكونات الشمس والنجوم الأخرى بناءً على الألوان غير الموجودة. [5]

6. بدون ميكانيكا الكم لما سطعت الشمس!

تصنع الشمس طاقتها خلال عملية تدعى «الاندماج النووي-Nuclear fusion»، والتي تتم باندماج بروتونين معاً – الجسيم موجب الشحنة في الذرة-.

الآن قد تتساءل كيف لهما أن يلتصقا ببعضهما ولهما الشحنة نفسها، ألن يتنافرا؟

إذا ما درسناهما كجسيمين سيتنافران تماماً كما يتنافر قطبي المغناطيس المتشابهين. يسمي الفيزيائيون ذلك ب«حاجز كولوم-Coulomb barrier» وهو كالحائط الذي يحول بين البروتونين.

وعندها ستصطدم البروتونات في الحائط وتبتعد: لن يوجد اندماج نووي ولن يوجد ضوء شمس!

والآن لنعتبرهم موجات.

عندما تصل قمة الموجة للحائط تكون مقدمة الموجة قد عبرته بالفعل.

علم أن ارتفاع الموجة يمثل المكان المحتمل وجود البروتون فيه، وعلى رغم أن احتمالية وجوده في مقدمة الموجة ضئيلة؛ إلا أنها تتحقق أحياناً، وعندها يكون وكأن البروتون عبر خلال الحاجز وبالتالي يحدث الاندماج النووي. أما هذا التأثير فيعرف باسم «النفق الكمومي-Quantum tunneling».
[6]

7. توقف ميكانيكا الكم انهيار النجوم الميتة

خلال حياة النجم؛ يَبقى في حالة من «التوازن الهيدروستاتيكي-hydrostatic equilibrium»، وهو توازن بين الطاقة الناتجة عن الاندماج النووي والتي تتجه للخارج وطاقة الجاذبية المتجهة للداخل؛ مما يحافظ على شكل النجم ويمنعه من الانهيار.

إلا أنه في نهاية حياة النجم ينفذ وقوده ويتوقف الاندماج؛ فتربح الجاذبية جاعلةً النجم ينهار على نفسه.[7]

وكلما أصبح أصغر كلما انضغطت المادة أكثر، وهنا يأتي دور «مبدأ باولي في الاستبعاد-Pauli exclusion principle»؛ أحد مبادئ ميكانيكا الكم الذي يمنع بعض الجسيمات كالإلكترونات من التواجد في نفس الحالة الكمية.

وبينما تحاول الجاذبية القيام بذلك، تواجه مقاومة يدعوها الفلكيون «ضغط تنكس الإلكترون-Electron degeneracy pressure»، فيتوقف الانهيار ويتشكل جسم جديد بحجم الأرض يدعى «قزم أبيض-White dwarf».
[8] 

8. تسبب تبخر الثقوب السوداء

يعد «مبدأ الريبة لهايزنبيرغ-Heisenberg uncertainty principle» أحد أهم مبادئ ميكانيك الكم، وينص على استحالة تحديد خاصّيتين لنظام ما بشكل دقيق بنفس الوقت: كلما عرفنا أحدها بدقة أكبر، كلما كان من الأصعب تحديد الخاصية الثانية.

ينطبق ذلك على سرعة الجسيم وموقعه، أو طاقته والزمن.

الأمر أشبه بأخذ قرض مالي، يمكنك اقتراض مبلغ كبير من المال لفترة زمنية قصيرة، أو اقتراض مبلغ صغير لمدة أطول، وليس الاثنين معاً!

يقودنا ذلك إلى فكرة الجسيمات الافتراضية، إذا اقتُرٍضت طاقة كافية من الطبيعة؛ يمكن لها أن تولد زوجين من الجسيمات الافتراضية في الفراغ بشكل (جسيم-مضاد جسيم)، ثم يختفيان بسرعة حتى لا يتخلفان عن سداد القرض؛ في عملية تسمى «الإفناء-Annihilation».

نعم، الفراغ الكمي ليس فارغاً تماماً!

افترض «ستيفن هوكينج-Stephen Hawking» حدوث هذه التذبذبات قرب حدود ثقب أسود ما: سيبتلع الثقب الأسود أحد الجسيمين، بينما سيستطيع الآخر الهرب من الثقب على شكل «إشعاع هوكينج-Hawking Radiation».

وبمرور الوقت، يتقلص الثقب الأسود وكأنه يتبخر! لأنه لا يسدد القرض كاملاً. [9]

9. تفسر ميكانيكا الكم بنية الكون على النطاق الكبير

إن «الانفجار العظيم-Big bang» أحد أفضل نظرياتنا عن نشأة الكون، وقد عُدل في الثمانينات ليتضمن نظرية أخرى تدعى «التضخم-Inflation».

تنص نظرية التضخم على انتفاخ الكون وصولاً لحجم حبة عنب؛ ذلك بعد ما كان أصغر من ذرة، وذلك في أول تريليون من تريليون تريليون جزء من الثانية، أي أن حجمه تضاعف حوالي 1078 مرة.

لاستيعاب ذلك؛ تخيل تكبير خلية دم حمراء بنفس المقدار، سيتجاوز حجمها الكون المنظور بأكمله!

وبما أنه كان أصغر من ذرة؛ فمن المرجح أن تذبذبات كمية مرتبطة بمبدأ هايزنبيرغ للريبة قد حكمت الكون في ذلك الوقت. والتضخم سبب نمو الكون بسرعة كبيرة؛ فلم يتثن لهذه التذبذبات الكمية أن تختفي، مما أدى لتركيز الطاقة أ:ثير في بعض الأماكن.

يعتقد الفلكيون أن ذلك كان بمثابة بذور تجمعت حولها المادة مشكلةً المجرات والعناقيد المجرية التي نرصدها اليوم. [5]

10. عالم من الأشباح!

إلى جانب إثباته تكميم الضوء؛ كذلك اعتقد أينشتاين بوجود تأثير ” شبحي عن بعد”. وهذا التأثير الشبحي هو آخر العشر معلومات عن ميكانيكا الكم في هذا الموضوع. نعرف اليوم ذلك ب«التشابك الكمي-Quantum entanglement»، ولكننا حتى الآن نجهل حقيقة ما يحدث فيه!

لنقل أننا أحضرنا زوجاً من الجسيمات بحيث تكون حالتها الكمية مرتبطة  أو “متشابكة”، أحدها في الحالة a والآخر في الحالة b: متعاكسين تماماً. فإذا كان أحدهما أزرق، يكون الثاني أحمر وهكذا.

وبحسب مبدأ باولي بالاستبعاد؛ يستحيل أن يكون لهما نفس الحالة الكمية، وعندها إذا قمنا بتغيير الجسيم الأزرق وجعلناه أحمراً مثلاً، سيتغير الآخر فوراً ليصبح معاكسه الأزرق من جديد.

في التشابك الكمي سيحدث ذلك حتى ولو وضعنا كل جسيم في جانب من الكون، وكأن معلومات التغيير الذي قمنا به قد سافرت أسرع من الضوء! [10]

قد لا نفهم ميكانيكا الكم بشكل كامل، ولكننا متيقنون من غرابتها أولاً وعظمتها ثانياً. شاركنا معلومات أخرى عن ميكانيكا الكم في التعليقات.

المصادر

[1] Britannica
[2] space
[3] Cornell university
[4] joint quantum institute
[5] space
[6] Harvard
[7] science direct
[8] university of Chicago
[9] nature
[10] nature

كيف نذهب إلى النجوم بالسفن الشراعية؟

خطى الإنسان أولى خطواته على عالم غير عالمنا في أواخر ستينيات القرن الماضي، عندما خطى أول خطوة على القمر كنا ندرك أن هذه ليست سوى خطوة صغيرة في طريق طويل بانتظارنا، عوالم كثيرة بانتظار من يستكشفها ومن يخلّد التاريخ اسمه كأول من خطاها بقدميه، ولكن ماذا عن ما وراء مجموعتنا الشمسية؟ هل سنزور النجوم التي نراها في سماء الليل يومًا ما؟ أم أنها ستظل حلمًا بعيد المنال؟ وكيف نذهب إلى النجوم بالسفن الشراعية؟

لماذا قد نذهب إلى النجوم؟

أولى الأسباب هي الفضول البشري، فما العلم بكل ما قدم لنا من اختراعات واكتشافات إلا نتيجة للفضول البشري، وهنا يجب أن نرد على ما يقوله البعض بشأن علم الفلك، فيقولون أن إنفاق الأموال على الأبحاث المتعلقة بعلم الفلك عديمة الجدوى فهو فرع من العلوم لا يمس حياتنا بأي شكل من الأشكال، إلا أن في هذا الطرح ضيق أفق، حيث لم يكن مايكل فاراداي يملك أدنى فكرة عما نفعله اليوم باستخدام الكهرباء عندما كان يجري تجاربه البسيطة، ولم يكن يدري نيوتن أن قوانين الحركة الخاصة به هي التي سنستخدمها لمغادرة كوكبنا والتطلع إلى العوالم الأخرى، فالسؤال عن الجدوى لا يجب أن يكون مطروحًا.

ثم أن موارد كوكبنا تنقص يومًا بعد يوم نتيجة لزيادة عدد البشر وزيادة معدلات الاستهلاك، فنحن في حاجة للسكن في عوالم أخرى، للبحث عن موارد جديدة

ولعلك تتساءل عن عنوان المقال “كيف نذهب إلى النجوم بالسفن الشراعية؟” وهو ما سنشرحه بعد قليل.

كيف نذهب إلى النجوم؟

لسوء الحظ، لن تجدي الطريقة المعهودة نفعًا عند السفر إلى النجوم، فلا يمكننا الاعتماد على الوقود الأحفوري، حيث يُعد نجم «قنطور الأقرب-Proxima Centauri» أقرب النجوم إلى مجموعتنا الشمسية، حيث يبعد عنّا 4 سنوات ضوئية فقط، إلا أن أسرع صواريخنا (أبولو 10) – والذي كان يتحرك بسرعة تقارب 40,000 كم/ساعة – سيحتاج إلى 100,000 سنة للوصول إليه!

وهنا يحين الوقت للكشف عن سر عنوان مقالنا الغريب.

ندما أبحر كولومبوس نحو الأمريكيتين كان يبحر بالسفن الشراعية، استخدم كولومبوس الأشرعة الهوائية لتحريك سفينته وسط أمواج المحيط حتى وصل إلى العالم الجديد، ونحن أيضًا يمكننا الذهاب إلى عالمنا الجديد باستخدام الأشرعة، ولكنها لن تكون أشرعة هوائية، بل ستكون أشرعة ضوئية.

كيف نذهب إلى النجوم بالسفن الشراعية؟

يكمن السر في قانون نيوتن الثالث الذي ينص على أن لكل فعل رد فعل معاكس له في الاتجاه ومساوي له في مقدار القوة.

فكّر في الأمر، إذا قمت ببذل أي مقدار من الطاقة في أي اتجاه في الفضاء سيُدفع بك في الاتجاه المعاكس بنفس المقدار الذي بذلته، أي أنك إن أضأت مصباحًا في الفضاء الخارجي، فسيؤدي هذا إلى دفعك في الاتجاه المعاكس للاتجاه الذي توجه فيه المصباح، ولكن ببطئ شديد بالطبع.

إذا فنحن نحتاج إلى أشرعة ضخمة لتجميع أكبر قدر من الضوء لإعطائها أكبر دفعة ممكنة نحو النجم الذي نرجو الوصول إليه، ولكي تنطلق الأشرعة عليها أن تعكس الضوء، وهو ما سيتطلب أن تكون هذه الأشرعة ذات سطح ناعم يعكس الضوء بسهولة، كالمرايا، لذا سنقوم بكسوة هذه الأشرعة الخفيفة بطبقة عاكسة للضوء.

ولكن من أين نحصل على الضوء؟

تُعد هذه الخطوة هي الخطوة الأصعب، حيث سنحتاج إلى طاقة ضوئية كبيرة، قد نحتاج هنا إلى بناء جهاز ليزر ضخم على سطح القمر، وهذا الليزر سيُزوّد بالطاقة عن طريق مفاعلات نووية موجودة على القمر، حيث أن تربة القمر غنية بنظير الهيليوم «هيليوم 3-Helium 3» نتيجة لتعرض تربته لأشعة الشمس المباشرة على مدى ملايين السنين.

قد نستخدم الهيليوم 3 في المفاعلات النووية التي سنبنيها على سطح القمر لتزويد جهاز الليزر العملاق بالطاقة اللازمة لإطلاق كمية كبيرة من الضوء لتحريك الأشرعة باتجاه النجوم بسرعة كافية، وهذا قد يعني أننا علينا أن ننتظر استعمار القمر وبناء المستوطنات عليه حتى نفكّر في السفر إلى النجوم، وهو ما قد يبدو محبطًا، إلا أنه ليس بعيد المنال، فأولى خطوات بناء المستعمرات هي الهبوط والاستكشاف، وهي ما بدأنا فيها من القرن الماضي وما زلنا نفعلها إلى الآن.

لم يفكر أجدادنا عندما اكتشفوا إمكانية استخدام الأقمشة لصنع أشرعة تستغل حركة الهواء لتحريك سفنهم في البحار أن أحفادهم سيستخدمون نفس الطريقة، ولكن هذه المرة ليس للتنقل في مياه البحار، ولكن في ظلام الفضاء، وليست من يابسة إلى يابسة، ولكن من نجم إلى نجم آخر.

المصادر

esa
space
nasa
sciencedirect

التاريخ الكبير: كيف تموت النجوم؟

لنعلم كيف تموت النجوم علينا أولا أن نعلم ما هي النجوم وكيف تعمل.

كيف تعمل النجوم؟

لنأخذ الشمس على سبيل المثال، شمسنا ذات كتلة كبيرة جدا، فهي عبارة عن كرة عملاقة من الغاز الساخن، وبسبب هذه الكتلة، تتعرض نواة الشمس لضغط رهيب، مما يزيد حرارتها إلى 16 مليون درجة، وهي درجة جيدة جدا لحدوث الاندماج النووي، حيث تتحول في كل ثانية كمية كبيرة من الهيدروجين إلى الهيليوم بفعل الاندماج داخل نواة الشمس، تفقد الشمس 4 مليون طن من المادة في صورة حرارة كل ثانية، مما يخبرك بشيء بديهي، شمسنا لها نهاية، عمر شمسنا هو 4.5 بليون سنة، وبقليل من الحسابات، اعتمادا على معدل تحويل الهيدروجين إلى هيليوم، أمكننا التنبؤ بأن شمسنا ستعيش ل 5 بلايين أخرى من السنين.

وبعد انقضاء عمرها، ستصير «عملاقًا أحمر-Red giant»، وتلتهم عطارد والأرض، ثم تنهار تحت وطأة الجاذبية، لتصير «قزمًا أبيضًا-White dwarf»، وهو كما يبدو من اسمه، فهو نجم أبيض صغير، بحجم الأرض تقريبًا، لكنه يحتوي كتلة الشمس بأكملها، وبهذا يصير كثيفًا جدًا، مما يجعل عمره يصل إلى تريليونات السنين!

كيف تموت النجوم الأكبر؟

عمر النجوم في الواقع يعتمد على شيئين، كمية الوقود النووي لديه، ومعدل استهلاكه لهذا الوقود، لنأخذ على سبيل المثال نجما ذو كتلة بقدر 20 ضعف كتلة الشمس، نجم كهذا سيبلغ سطوعه 40 الف مرة سطوع الشمس، مما يعني أنه سيستهلك وقوده أسرع ب 40 الف مرة، جاعلًا عمره 10 مليون سنة فقط!

ولكن النجوم كهذه لا ينتهي بها الأمر لتصير أقزاما بيضاء مثل الشمس، حيث تنهار على نفسها بسرعة بالغة بفعل الجاذبية، مما يدفع بالالكترونات نحو البروتونات لتصير نيوترونات، وتتزاحم هذه النيوترونات وتتنافر بفعل القوة النووية القوية، كما تترك خلفها إنفجارًا بقوة تريليون ميجاطن بالمناسبة، حيث أن «النجوم النيوترونية-Neutron stars»، يمكن أن تصل كتلتها إلى أضعاف كتلة الشمس، لكن بقطر 20 كيلومتر فقط!
مما يجعلها كثيفة للغاية، فملعقة واحدة من هذه النجوم تساوي كتلة ألف من أهرامات الجيزة!

ولكن ماذا عن النجوم الأكبر من هذه؟

لا ترحم الجاذبية النجوم الأكبر، حيث تسحقها على نفسها في لمح البصر، لتركز كتلة النجم بأكمله داخل نقطة صغيرة للغاية، تدعى ب «المفردة-singularity»، وهذا ما نعرفه جميعًا باسم «الثقوب السوداء-Black holes»، الذي لا يسمح لأي شيء بمغادرة جاذبيته، مهما كانت سرعته، حتى لو كان الضوء نفسه.

تترك هذه النجوم خلفها انفجارات مهولة، مما نرصده في شكل السدم، فالسدم ما هي إلا جثث النجوم، بالطبع تولد العديد من النجوم كل يوم، لكن هذا إلى زوال، حيث سيأتي يوم لا تولد فيه المزيد من النجوم، وتموت النجوم كلها، تاركة الكون في ظلام دامس، معلنة انتهاء الحقبة النجمية للكون.

من كورس ل Coursera مقدم من «جامعة أمستردام-Amsterdam university».

coursera

لقراءة سلسلة التاريخ الكبير ج4 من هنا

Exit mobile version