التاريخ الكبير: ما هي القوى التي تحكم الكون؟

كوننا محكوم بأربع قوى فيزيائية، فكل ما نراه في حياتنا من أحداث يمكن الحكم عليه من خلال التفاعل بين هذه القوة الأربعة، إذًا ما هي القوى التي تحكم الكون؟

1- «القوة الكهرومغناطيسية-Electromagnetic force»

القوة الكهرومغناطيسية هي القوة التي تسبب الترابط بين الجسيمات ذات الشحنة الموجبة، ونظيراتها ذات الشحنة السالبة، إذ أنها هي السبب في تجاذب الالكترونات والبروتونات، كما أن لكل قوة من بين هذه القوة الأربعة جسيمًا ليحملها، فعلى سبيل المثال لا الحصر، الجسيم الذي يحمل القوة الكهرومغناطيسية هو الفوتون، وهو جسيم يسير بسرعة الضوء إذ أنه منعدم الكتلة، لكنه مليء بالطاقة، فتقوم الالكترونات بتبادل الفوتونات بينها وبين البروتونات للحفاظ على ترابطهم في الذرة، يمكنك تصور الأمر على أنه مباراة كرة قدم، فالجزيئات هي اللاعبون، بينما التفاعل بينهم محكوم بحركة الكرة فيما بينهم.

2- «القوة النووية القوية-Strong nuclear force»

وهي القوة التي تسبب الترابط بين البروتونات وبعضها البعض داخل نواة الذرة، لتشكيل العناصر الثقيلة، إذ أن البروتونات ذات شحنة موجبة إلا أنها لا تزال متجاذبة ومتحدة في نواة الذرة، بسبب القوة النووية القوية، كما أنها أيضًا هي السبب في ترابط الكواركات داخل البروتونات، والجسيم الحامل لهذه القوة هو «الجلون-gluon»، فتقوم الكواركات بتبادل الجلونات فيما بينها، لتحافظ على ترابطها داخل البروتونات.

3- «القوة النووية الضعيفة-weak nuclear force»

تتسبب هذه القوة فيما يعرف بالتحلل الإشعاعي، مثل «إشعاع بيتا-Beta radiation»، وهذه القوة ليست ذات جسيم حامل واحد، ولكن ثلاثة جسيمات حاملة لها وهم W plus, W minus, Z boson، وهم يختلفون عن الفوتونات والجلونات في أمر الكتلة، فالفوتونات والجلونات منعدمة الكتلة، لكن هذه الجسيمات لها كتلة.

4- «الجاذبية-Gravity»

ما نتحدث عنه هنا هو ما يعرف ب «النموذج المعياري- Standard model»، وهو ما طوره الفيزيائيون في أوائل ستينيات القرن الماضي، ومن أشهر هؤلاء الفيزيائيون هو «فيلتمان-Veltman»، لكن نموذج فيلتمان حوى بعض الأخطاء القاتلة، إذ نصت نظريته بتنبؤات سخيفة، كما أن نموذج فيلتمان لا يكون صحيحًا إلا إذا كانت الجزيئات منعدمة الكتلة، لكنها إن كانت كذلك لطارت في الفراغ بسرعة الضوء، ولحل هذا الإشكال، صاغ «بيتر هيجز-Peter higgs» معادلاته، لوصف ما سُمّي بعد ذلك ب «حقل هيجز-higgs field»، إذ أخبر هيجز بأن كتلة الجسيمات لا تأتي من داخلها، وإنما هناك حقل غير مرئي، تتفاعل الجسيمات معه أثناء حركتها، فيُبطئ من حركتها، على سبيل المثال، إذا وجدنا جسيمًا ثقيلًا، فهذا يعني أنه يتفاعل بشدة مع حقل هيجز، وليس أن كتلة الجسيم نتيجة لتركز المادة بداخله.

إذًا فالأمر بسيط الآن، علينا فقط أن نجد جسيم هيجز، وعندها سيكون هذا دليلًا على وجود حقل هيجز، وقد حدث بالفعل، فقد وجد الفيزيائيون «بوزون هيجز-Higgs boson» عام 2012، وهذا هو ما يعطي الجسيمات كتلتها.

مما لا يشك فيه عاقل هو وجود الجاذبية وتأثيرها فيما حولنا، فهي التي تسببت بسقوط التفاحة، وهطول الأمطار، وترابط الأرض والقمر، ودوران الأرض حول الشمس، والكثير والكثير من الأشياء الأخرى، لكن الفيزيائيون لا يعرفون جسيمًا ليحمل هذه القوة، إذ أنها قوة كبيرة لتكون محمولة بجسيم واحد، ولكن مما لا شك فيه كذلك أنهم منهمكون في البحث عن هذا الجسيم بحثًا عن فهم أفضل عن ماهية القوى التي تحكم الكون.

من كورس ل Coursera مقدم من «جامعة أمستردام-Amsterdam university».

coursera

لقراءة سلسلة التاريخ الكبير ج2 من هنا

التاريخ الكبير: مم يتكون الكون؟

سلسلة التاريخ الكبير: مم يتكون الكون؟ لطالما سحرنا الكون بغموضه، لكن في القرن الماضي، تمكن العلماء من إزالة بعض من الغموض الذي يحيط بالكون، كما اكتشفنا بعض الأمور المثيرة، على سبيل المثال علمنا أن الفراغ ليس عدمًا كاملًا، ولكنه يحوي «تقلبات كمومية-Quantum fluctuations» تُنشئ جزيئات ومضاداتها، ليتحد الجزيء و مضاده ليعودوا كما كانوا فراغًا، ولكن هذا الاكتشاف المثير قد يدفعك للتساؤل عن ماهية المادة من الأساس، في الواقع، نحن نعرف الكثير، دعونا نناقش في سلسلة التاريخ الكبير: مم يتكون الكون؟

1- الالكترونات

كما نعلم جميعا تدور الالكترونات حول نوى الذرات بسرعة تقارب سرعة الضوء، وهذا لا يسمح لنا بقياس سرعته و تحديد مكانه في نفس اللحظة، تقف قوانيننا عاجزة أمام هذا الجزيء الصغير ذو الشحنة السالبة.

2- «الكواركات-Quarks»

تحتوي نواة الذرة على البروتونات والنيوترونات، واللذان بدورهما يوجد بداخلهما جزيء أصغر، يدعى بالكوارك، وحجم الكوارك أصغر من حجم البروتون بألف مرة، إذ أن كل بروتون يحتوي على ثلاث كوراكات، وكل نيوترون يحتوي على ثلاثة أيضًا، كما أن للكواركات أنواع مثل : «الكوارك العلوي-Up quark»، «الكوارك السفلي-Down quark»، وغيرهم، إلا أن هذان النوعان هما ما يكوّنان المادة التي في كوننا، و يحتوي البروتون على كواركان علويان وكوارك سفلي، بينما يحتوي النيوترون على كواركان سفليان وكوارك علوي.

3- «الالكترون نيوترينو-Electron neutrino»

ليس مكونًا من مكونات الذرة، لكنه يغمر كوننا بجسيماته طوال الوقت، جسيماته القادرة على اختراق كل شيء دون أن نشعر بها، إذ أن في الثانية الواحدة يخترق مئة بليون من هذا الجسيم إبهامك!
لا تزال خصائص النيوترينو مجهولة لدى المجتمع العلمي، كما أننا لا نعرف أي دور يلعب في بناء كوننا، ربما نجيب عن هذه الأسئلة في المستقبل القريب.

4- «المادة المضادة-Antimatter»

كانت المادة المضادة افتراضًا تنبأت به معادلات العالم «بول ديراك-Paul Dirac» في عام 1926، إلا أننا استطعنا إنتاجها في المعامل، كما رصدناها في التقلبات الكمومية، إذ أن الالكترون له جسيم مضاد بشحنة موجبة ويدعى بال «بوزيترون-Positron»، كما أن للبروتون جسيمًا مضادًا كذلك، ويدعى بال «البروتون المضاد-Antiproton»، فلكل جسيم من جسيمات المادة جسيمًا مقابلًا من جسيمات المادة المضادة.

عندما يلتقي جزيء بنظيره من المادة المضادة، يتحدان سويًا ليفنيا ويتحولا إلى طاقة وفقًا لمعادلة ألبرت أينشتاين الشهيرة E=MC^2، التي تنص على أن المادة والطاقة ما هما إلا وجهان لعملة واحدة، وهذه بالضبط هي فكرة «المسرعات الجزيئية-Particle Accelerators»، حيث يقوم الفيزيائيون بتسريع الجسيمات لتصطدم ببعضها منتجةً طاقة هائلة، وبحسب كمية الطاقة تنشأ جسيمات جديدة، إذ اكتشفنا نوعًا أثقل من الكواركات، وهو «الكوارك القمي-Top quark»، ونوعا أثقل من الالكترونات، وهي «الميونات-Muons»، ونوعا أثقل من النيوترونات، وهي ال «ميون نيوترينو-Muon neutrino»، وكل هذا عن طريق مصادمة الجزيئات ببعضها البعض، لتنتج طاقة، ومن ثم تتركز هذه الطاقة لتتحول إلى جسيمات جديدة.

ولكن لماذا لا نجد المادة المضادة بوفرة في الطبيعة مثل المادة؟ ولماذا هذه الجسيمات بالتحديد؟ وهل توجد جسيمات أخرى؟

كل هذه أسئلة لا نعرف لها إجابة في الوقت الحالي، لكن لربما كنت أنت أيضًا المجيب عليها، والفائز القادم بجائزة نوبل في الفيزياء.

من كورس ل Coursera مقدم من «جامعة أمستردام-Amsterdam university».

لقراءة الجزء الأول من هنا

Exit mobile version