ما الفرق بين البوابات المنطقية والبوابات الكمية؟

ما الفرق بين البوابات المنطقية والبوابات الكمية؟

صرحت مؤخرًا شركة IBM بأنها بحلول 2023، ستكون حواسيبها من 1000 كيوبت ومع هذا التقدم الهائل والتصارع بين الشركات والمؤسسات العلمية في الحوسبة الكمية، سنعرف في هذا المقال كيف تتم العمليات داخل الحواسيب الكمية، ما الذي يتحكم في الكيوبت؟ وقبل البدء في اللبنات الأساسية للحوسبة الكمية، فلعلك سألت نفسك يومًا كيف تتدفق المعلومات في الحاسوب الكلاسيكي وتخرج إلينا؟ إنها «البوابات المنطقية-Logical gates»! فما هي وكيف تعمل وما أهميتها؟

البوابات المنطقية

تُعد البوابات المنطقية اللبنة الأساسية للإلكترونيات الرقمية داخل الحاسوب. فهنالك ما يقارب من 100 مليون بوابة تمر المعلومات عبرها وهذه البوابات مصنوعة من الترانزستورات مع مكونات كهربائيّة أخرى مثل المقاومات والثنائيات، فهي وحدات من الجهاز العصبي المركزي للحاسوب وتحتوى الدوائر المنطقية على أجهزة مثل ALU أو وحدة الحساب المنطقي أو معدات الإرسال أو التسجيل.

فمثلًا عندما تقوم الخلايا العصبية بتمرير المعلومات الكهروكيميائية في جميع أجزاء أجسامنا، تقوم البوابات المنطقية بنفس الفعل لكن عن طريق تمرير المعلومات الإلكترونية في جميع أنحاء الحاسوب.

فتتخذ البوابات المنطقية قرارًا بناءً على مجموعة من الإشارات الرقمية القادمة من مدخلاتها، ومعظم البوابات المنطقية تحتوي على مدخلين ومخرج واحد، وتعتمد على الجبر البوليني. فتقوم بإجراء عمليات منطقية على مدخلات ثنائية أي في الحواسيب التي تعتمد على النظام الثنائي -وهو نظام يستخدم لتمثيل القيم العددية متكون من رمزين أو حالتين 0 (إطفاء، خطأ) و1 (صح، تشغيل). فتتكون من مدخلات ومخرجات في الأسلاك داخل الحاسوب.

الآن لنتعرف على الأنواع المختلفة من البوابات المنطقية.

بوابة (NOT)

هي أبسط البوابات المنطقية وتعرف أيضًا باسم العاكس، حيث تقبل إدخالًا واحدًا ويخرج منها قيمة معاكسة لهذا الإدخال، فمثلًا إذا أدخلت 1 فإن الناتج (الخرج) سيكون 0 والعكس صحيح. قد يبدو لك ذلك أمر هين ولكن في الحواسيب يمكننا بناء منطق معقد من خلال الجمع بين العديد من العمليات الصغيرة.

بوابة (AND)


تقبل تلك البوابة اثنين من المدخلات وإذا كان كل منهما قيد التشغيل أو 1 و1 فإن الخرج سيكون 1 وإذا كانت المدخلات في حالة توقف أي 0 و0 فإن الخرج سيكون 0. أما إذا كان مدخل قيد التشغيل والأخر متوقف فإن الخرج سيكون 0. فهي تُعامل كعملية الضرب أي 11=1، 10=0 وهكذا… وتتمثل عملية فهم العمليات المنطقية في إنشاء جدول الحقيقة لجميع المدخلات والمخرجات الممكنة.

جدول الحقيقة -وهو جدول رياضي مستخدم في الجبر البوليني ويتم تمثيل (1 بصح أو True و0 بخطأ أو False-:

بوابة (OR)

تقبل البوابة المنطقية OR -أو تُسمى “أو”- مدخلين وإذا كان كلا مدخلين 1 فإن الخرج 1، وإذا كان كلا المدخلين 0 فإن المدخل 0… وإليكم جدول الحقيقة لتوضيح باقي القيم.

بوابة (NAND)

هي مزيج من البوابة AND و NOT. وإليك جدول الحقيقة والرسوم التوضيحية التالية: بوابة (NOR) هي مزيج من البوابة OR و NOT. وإليك جدول الحقيقة والرسوم التوضيحية التالية:

بوابة (NOR)

هي مزيج من البوابة OR و NOT. وإليك جدول الحقيقة والرسوم التوضيحية التالية:

بوابة (XOR)

وX من Exclusive وهي تتضمن NOT, OR, AND وإليك جدول الحقيقة والرسوم التوضيحية التالية:

الآن بعد ما عرفنا عن ماهية البوابات المنطقية، لننتقل إلى صلب موضوعنا وهو البوابات الكمية، ماذا تعني، ما الفارق بينها وبين البوابات المنطقية؟ هذا ما سنعرفه في السطور التالية.

ما الفرق بين البوابات المنطقية والبوابات الكمية؟

تتعامل الحواسيب الكلاسيكية مع البتات باستخدم البوابات المنطقية التي ذكرناها، بالمثل تمثل الكيوبتات وحدة بناء الحواسيب الكمية باستخدام بوابات الكم. فتُطبق البوابات الكمية على الكيوبتات وتتغير حالات الكيوبت اعتمادًا على البوابة التي يتم تطبيقها. فيوجد حاللت للكيوبت ويمكن تمثيله بواسطة نظام ثنائي الأبعاد.

فالفارق بين البوابات المنطقية والكمية هو البنية الأساسية لهما البت والكيوبت، الكيوبت في الحالة الكمية له حالات مميزة ومختلفة كالتراكب وإليك البوابات الرئيسة في الحواسيب الكمية.

تمثل المصفوفات بعض الدوائر الكمية شائعة الاستخدام؛ لذلك فالمعرفة بالجبر الخطي مهمة وهذا ما سنراه…

البوابات الكمية

بوابات باولي Pauli gates

هي مصفوفات باولي الثلاثة وهي تمثل كيوبت واحد، حيث Pauli-X,Pauli-Y, Pauli-Z تمثل دوران الكيوبت حول محاور Y, X, Z في كورة بلوخ. بوابة X هي البوابة المكافئة لبوابة NOT في الحواسيب الكلاسيكية، ويتم تمثيلها بواسطة مصفوفة Pauli-X وكرة بلوخ:

بالمثل بوابة Y هي تشبه لحد كبيرة X ولكن مع وجود i بدلًا من 1 وعلامة سالبة أعلى اليمين.

أما بوابة Z فهي مشابهة أيضًا لكن مع وجود علامة سالبة.

•فتقوم Y, Z بتغيير دوران الكيوبت أيضًا.

بوابة Hadamard

لجعل الجسيم في حالة تراكب، تُطبق بوابة معينة وهي بوابة Hadamard وهي بوابة معروفة في الحوسبة الكمية ومثل Pauli-X تعمل على كيوبت واحد وبمصفوفة 2*2 أيضًا. فهي لا تحول فقط دوران الإلكترون بل تخلق تراكب لكل حالة.

يوجد العديد من البوابات الأخرى لكن ما ذكرناه هو الرئيس، تعمل بمصفوفات على نظم 4*4 و8*8… لكن ليس بكم البوابات فتذكر أنه طالما عرفت الأساس يمكنك استخدامه مثل بوابات OR, NOT, AND هم أساس البوابات المنطقية وبقية البوابات هي فرع منها. فتبعنا عزيزي القارئ، لمعرفة المزيد من التفاصيل عن الحوسبة الكمية.

المصادر

التاريخ الكبير: ما هي القوى التي تحكم الكون؟

كوننا محكوم بأربع قوى فيزيائية، فكل ما نراه في حياتنا من أحداث يمكن الحكم عليه من خلال التفاعل بين هذه القوة الأربعة، إذًا ما هي القوى التي تحكم الكون؟

1- «القوة الكهرومغناطيسية-Electromagnetic force»

القوة الكهرومغناطيسية هي القوة التي تسبب الترابط بين الجسيمات ذات الشحنة الموجبة، ونظيراتها ذات الشحنة السالبة، إذ أنها هي السبب في تجاذب الالكترونات والبروتونات، كما أن لكل قوة من بين هذه القوة الأربعة جسيمًا ليحملها، فعلى سبيل المثال لا الحصر، الجسيم الذي يحمل القوة الكهرومغناطيسية هو الفوتون، وهو جسيم يسير بسرعة الضوء إذ أنه منعدم الكتلة، لكنه مليء بالطاقة، فتقوم الالكترونات بتبادل الفوتونات بينها وبين البروتونات للحفاظ على ترابطهم في الذرة، يمكنك تصور الأمر على أنه مباراة كرة قدم، فالجزيئات هي اللاعبون، بينما التفاعل بينهم محكوم بحركة الكرة فيما بينهم.

2- «القوة النووية القوية-Strong nuclear force»

وهي القوة التي تسبب الترابط بين البروتونات وبعضها البعض داخل نواة الذرة، لتشكيل العناصر الثقيلة، إذ أن البروتونات ذات شحنة موجبة إلا أنها لا تزال متجاذبة ومتحدة في نواة الذرة، بسبب القوة النووية القوية، كما أنها أيضًا هي السبب في ترابط الكواركات داخل البروتونات، والجسيم الحامل لهذه القوة هو «الجلون-gluon»، فتقوم الكواركات بتبادل الجلونات فيما بينها، لتحافظ على ترابطها داخل البروتونات.

3- «القوة النووية الضعيفة-weak nuclear force»

تتسبب هذه القوة فيما يعرف بالتحلل الإشعاعي، مثل «إشعاع بيتا-Beta radiation»، وهذه القوة ليست ذات جسيم حامل واحد، ولكن ثلاثة جسيمات حاملة لها وهم W plus, W minus, Z boson، وهم يختلفون عن الفوتونات والجلونات في أمر الكتلة، فالفوتونات والجلونات منعدمة الكتلة، لكن هذه الجسيمات لها كتلة.

4- «الجاذبية-Gravity»

ما نتحدث عنه هنا هو ما يعرف ب «النموذج المعياري- Standard model»، وهو ما طوره الفيزيائيون في أوائل ستينيات القرن الماضي، ومن أشهر هؤلاء الفيزيائيون هو «فيلتمان-Veltman»، لكن نموذج فيلتمان حوى بعض الأخطاء القاتلة، إذ نصت نظريته بتنبؤات سخيفة، كما أن نموذج فيلتمان لا يكون صحيحًا إلا إذا كانت الجزيئات منعدمة الكتلة، لكنها إن كانت كذلك لطارت في الفراغ بسرعة الضوء، ولحل هذا الإشكال، صاغ «بيتر هيجز-Peter higgs» معادلاته، لوصف ما سُمّي بعد ذلك ب «حقل هيجز-higgs field»، إذ أخبر هيجز بأن كتلة الجسيمات لا تأتي من داخلها، وإنما هناك حقل غير مرئي، تتفاعل الجسيمات معه أثناء حركتها، فيُبطئ من حركتها، على سبيل المثال، إذا وجدنا جسيمًا ثقيلًا، فهذا يعني أنه يتفاعل بشدة مع حقل هيجز، وليس أن كتلة الجسيم نتيجة لتركز المادة بداخله.

إذًا فالأمر بسيط الآن، علينا فقط أن نجد جسيم هيجز، وعندها سيكون هذا دليلًا على وجود حقل هيجز، وقد حدث بالفعل، فقد وجد الفيزيائيون «بوزون هيجز-Higgs boson» عام 2012، وهذا هو ما يعطي الجسيمات كتلتها.

مما لا يشك فيه عاقل هو وجود الجاذبية وتأثيرها فيما حولنا، فهي التي تسببت بسقوط التفاحة، وهطول الأمطار، وترابط الأرض والقمر، ودوران الأرض حول الشمس، والكثير والكثير من الأشياء الأخرى، لكن الفيزيائيون لا يعرفون جسيمًا ليحمل هذه القوة، إذ أنها قوة كبيرة لتكون محمولة بجسيم واحد، ولكن مما لا شك فيه كذلك أنهم منهمكون في البحث عن هذا الجسيم بحثًا عن فهم أفضل عن ماهية القوى التي تحكم الكون.

من كورس ل Coursera مقدم من «جامعة أمستردام-Amsterdam university».

coursera

لقراءة سلسلة التاريخ الكبير ج2 من هنا

Exit mobile version