ما هي العناصر الأرضية النادرة، وفيمَ تستخدم؟

هذه المقالة هي الجزء 13 من 22 في سلسلة موضوعات تأسيسية في الطاقة المتجددة

تعد المواد الخام أهم عائق يحول دون تحقيق النقلة المرجوة من مصادر الطاقة الحالية إلى مصادر متجددة نظيفة. في معظم دول العالم وأهمها الاتحاد الأوروبي، أسهمت الحاجة الماسة لمواد تحقق هذه النقلة في خلق زخم بحثي تُوج بعدة نتائج ربما لم تتناسب في النهاية مع ما هو متاح في السوق العالمية. فالتركيز كان نحو العناصر الأرضية النادرة، والتي يشكل عدم توفرها عائقًا أمام استخدامها على مدى اقتصادي وتجاري واسع. كونها ليست في متناول جميع الأقطار، أدى هذا إلى خلق تداعيات سياسية واقتصادية بدأنا نشهدها في الأعوام الأخيرة.[1] فما هي العناصر الأرضية النادرة، وفيمَ تستخدم؟

العناصر الأرضية النادرة

هي عبارة عن مجموعة من سبعة عشر عنصر كيميائي في الجدول الدوري، وتحديدًا السكانديوم، الإتريوم، واللانثانيدات. يعتبر السكاندوم والإتريوم عناصر أرضية نادرة بسبب ظهورها في الفلزات مع اللانثانيدات وبسبب خواصها الكيميائية المشابهة لها. أطلق اسم “نادرة” على هذه العناصر بسبب قلة الأماكن التي كانت تستخرج منها سابقا، إلا أنه مؤخرًا فإنه يعثر على تركيز عالٍ نسبيًا من هذه العناصر في القشرة الأرضية.[2] تستخدم هذه المواد في تطبيقات التقنيات الحديثة على نطاق واسع، وأهمها: النيوديميوم، والباراسيوديميوم، والديسبروسيم، والتربيوم؛ والتي تدخل جميعها في صناعة المغناطيس الدائم المسمى ب ” نيوديميوم- حديد- البورون” «NdFeB».

العناصر الأرضية النادرة سياسيًا

كما ذكر سابقًا، من الممكن العثور على هذه المعادن بتركيز عالٍ نسبيًا في القشرة الأرضية، إلا إن ارتفاع تكلفتها يعزو إلى عملية استخراجها المعقدة بسبب عدم تواجدها بصورتها النقية في الطبيعة، عدا أن توزيعها الجغرافي متباين بحد ذاته.
فتركز معظم المناجم في الصين سبب ندرة تنوع لهذه الثروة، واحتياج السوق العالمية لهذه المواد جعل منها سلاح جيوسياسي فعال تستخدمه الصين لتوسيع نفوذها، وتلوح به كورقة ضغط في المفاوضات السياسية والتجارية.

علاوة على ذلك، قامت الصين بتوسيع أعمال الحفر والتعدين في مناجمها والمناطق الخاضعة لسيطرتها كخطوة لزيادة إنتاج الأجزاء ذات القيمة السوقية المرتفعة، مثل: السبائك، والمغناطيس الدائم، مطالبة بريادة عالمية وهيمنة في سلسلة القيمة لهذه الصناعة بشكل مكتمل، تنفيذًا للخطة الإستراتيجية للحزب الحاكم لعام ٢٠٢٥.

فبعد حدوث أزمة المعادن النادرة بين عامي ٢٠١٠ – ٢٠١١؛ الناتجة عن تذبذب أسعارها ما بين صعود مفاجئ وانخفاض حاد، تزايد التوتر العالمي، مما دفع إلى تشكل وعي جمعي في المجتمع الدولي بضرورة دعم مشاريع البحث والتعدين في هذا المجال.

فتعددت الندوات المتخصصة المقامة، ودشنت نشاطها بإنشاء أول مؤسسة عالمية«Rare earth industrial association» تعنى بصناعة المعادن النادرة عام ٢٠١٩.[1]

المغناطيس الدائم «NdFeB»

طُور مغناطيس «NdFeB» لأول مرة عام ١٩٨٤ عبر جنرال موتورز، ومؤسسة سوميتومو«General Motors and Sumitomo Corporation»، استحدثت المؤسستان السبيكة بشكل منفرد وعبر طرق تصنيع مختلفة تمامًا، وكانت النتيجة مغناطيس دائم مشبع «Bonded permanent magnets» من صنع جنرال موتورز ، ومغناطيس دائم متكلس«Sintered permanent magnets» من صنع سوميتومو.

تتكون هذه السبائك من النيوديميوم، والباراسيوديميوم، والديسبروسيم، والتربيوم. بينما يساهم كلًا من النيوديميوم، والباراسيوديميوم في زيادة صلابة المغناطيس، يعمل كلًا من الديسبروسيم، والتربيوم على تحسين قابلية التمغنط خصوصًا في درجات الحرارة العالية.

من الممكن التلاعب في نسب المواد في المركب لإنتاج خواص مغنطة مختلفة. فمن الممكن استبدال النيوديميوم، والباراسيوديميوم بعناصر أخرى بصورة محدودة خاضعة لشروط مواصفات التشغيل.

في السنوات القليلة السابقة، ركزت معظم الأبحاث على الاستفادة القصوى من استخدام الديسبروسيم، والتربيوم، بالرغم من تكلفتهما العالية.[1,3]

استخدام «NdFeB» في تقنيات الطاقة الحديثة

منذ بزوغ فجرها في عام ٢٠٠٥، بشرت مولدات المغناطيس الدائم، خصوصًا تلك المستخدمة في عنفات السواحل، بمرحلة جديدة لقدرتها على إنتاج كمية عالية من الكهرباء، وبكفاءة عالية رغم صغر حجمها، فاتحة المجال لزيادة الإنتاج السنوي من الطاقة بتكاليف أقل.

يحتوي المغناطيس المستخدم في مولدات عنفات الرياح على ٢٨.٥% نيوديميوم، ٤.٤ باراسيوديميوم، ١% بورون، ٦٦% حديد، بوزن يصل إلى ٤ طن.

بعد التداعيات السياسية الأخيرة، توالت الجهود لتقليص محتويات المغناطيس الدائم من المعادن النادرة في مولدات عنفات الرياح. فعلى سبيل المثال، خفضت شركة سيمنز جيميزا للطاقة المتجددة«Siemens Gamesa Renewable Energy» نسبة الديسبروسيم في مولداتها إلى نسبة أقل من ١%. وفي خطوة أكثر جرأة، طورت «GreenSpur Renewables» نموذج لمولدات ذات مغناطيس حديدي خال من المعادن النادرة، وبعد مروره بعدة مراحل اختبارية ناجحة، ستبدأ الشركة بتسويقه تجاريًا.

حاليًا، عدة نماذج تم اختبارها بنجاح لمولدات ذات ١٢ ميجا واط، مع الوصول إلى ٢٠ ميجا واط في ٢٠٢٢. مع أن معظم المحاولات تسير في اتجاه تقليص استخدام المعادن النادرة، لا يزال العالم بعيد عن تطوير مغناطيس دائم فعال خال من عناصر الأرض.

مستقبلًا، يمكن للبدائل أن تتضمن مولدات بمغناطيس ذو توصيلية فائقة «superconductor-based generators»، كتلك المختبرة في مشروع إيكو سوينج«EcoSwing project» والتي تم تمويلها من قبل الاتحاد الأوروبي. أحد الحلول البديلة يشمل استخدام المولدات الهجينة «hybrid drive generators»، والتي تستخدم مغناطيس دائم صغير مقارنة بالنوع العادي. الأخير يمكن أن يخفض الاعتماد على المعادن النادرة بنسبة ثلثين في العنفة الواحدة. مع هذا، تبقى كل الخيارات المتاحة بحاجة للكثير من التطوير والدراسة لتصبح مؤهلة لاستبدال المعادن النادرة.[1,3]

[1]THE ROLE OF RARE EARTH ELEMENTS IN WIND ENERGY AND ELECTRIC MOBILITY
[2] Rare-earth element
[3]Critical Materials for the Energy Transition – IRENA

ما هي القوة المغناطيسية وكيف تم اكتشافها؟

تأثير القوة المغناطيسية في قصة أعظم معادلات في التاريخ

تعد القوة المغناطيسية من أقدم الظواهر التي اكتشفها الإنسان. والتي كان لها دور كبير في تغيير نظرته للكثير من الظواهر الأخرى. كما أن اكتشافها كان نقطة انطلاق للكثير من الاختراعات المذهلة. فما هي القوة المغناطيسية وكيف تم اكتشافها؟

سحر القوة المغناطيسية

 في رواية مئة عام من العزلة، عرفنا من الكاتب الشهير “غابرييل غارسيا ماركيز” أن ذاك الغجري المربوع كث اللحية المدعو “ملكياديس”، مضى من بيت إلى بيت يجر سبيكتين معدنيتين. فاستولى الرعب على سكان قرية “ماكوندو” وهم يرون القدور والطسوت والمواقد تتساقط من أماكنها، والمسامير تتطاير من الأخشاب، وراحت جميعًا تنجر وراء سبيكتي ملكياديس السحريتين.

فكر “خوسيه أركاديو بوينديا”، وهو أحد أبطال الرواية، بأنه يستطيع استخدام هذا الاختراع في استخراج الذهب المدفون في الأرض. حذّره ملكياديس قائلًا “الاختراع لا ينفع لهذا”. ولكن خوسيه قايض ثروة الأسرة كاملة بهذا الاختراع، والشيء الوحيد الذي استخرجه من الأرض -بعد أشهر من التنقيب- درعًا حديدية من القرن الخامس عشر.

قبل ذلك بأربعة آلاف سنة، كان راعٍ كْريتيّ -ليكن اسمه ماغنس- يتجول في بلدة شمال اليونان -ليكن اسمها ماغنيسيا- حيث علقت مسامير نعله والطرف المعدني من عكازه بصخرة سوداء كبيرة مكونة من معدن (الماجنتيت-Magnetite). نعرف الآن أن الماجنتيت مادة مغناطيسية طبيعية تركيبها الكيميائي (Fe3O4). وحين تصنع إبرة من هذا الماجنتيت وتوضع على سطح الماء، فإنها تشير دومًا إلى الاتجاه ذاته. حيث يشير الاتجاه الشمالي للإبرة تقريبًا نحو القطب الشمالي للأرض. (وكان هذا مبدأ البوصلة التي طورها الصينيون).

من يدري؟ فقد يكون أرخميدس قد نجح فعلًا في إغراق سفن الأعداء باستخدامه مغناطيسًا كبيرًا استطاع انتزاع المسامير من أخشابها.

مرت قرون من امتزاج السحر بالخرافة بالحقائق، حتى توصل الإنجليزي “وليم جلبرت” عام 1600م إلى ما يمكن عده أول بحث علمي في هذا الموضوع. وقال فيه إنه يمكن تصور الأرض بوصفها مغناطيسًا كبيرًا، وهذا يفسر حركة إبرة البوصلة. إذ يمكنك تحويل مسمار عادي من الحديد إلى مغناطيس بحكه عدة مرات بمغناطيس دائم (هذا ما نسميه بالمَغْنطة). وأن هذه المغناطيسية المُحدَثة يمكن إزالتها بتسخين المسمار أو طرقه مرارًا.

عودة إلى الطفولة

بوسعنا تفهم ذهول وانسحار سكان ماكوندو بالمغناطيس، فقد عاش أكثرنا تجربة أول لقاء له مع مغناطيس. ضع مغناطيسًا على طاولة، ومسمارًا على مسافة منه. ابدأ بتحريك المغناطيس ببطء نحو المسمار. فجأة عند نقطة معينة يقفز المسمار من مكانه ويلتصق بالمغناطيس!

هذا ما نعنيه بأن للمغانط حقلًا مغناطيسيًا يمتد حولها (أو أنها تؤثر عن بعد-At a distance). ومن الواضح أن حقلها هذا يستطيع النفاذ عبر الهواء ليصل إلى المسمار. بل هو ينفذ عبر الورق مثلًا، الأمر الذي يتيح لك إلصاق الملاحظات على البراد.

وللمغناطيس قطبان شمالي وجنوبي. وإن كان عندك مغناطيسان ستجد كيف تتجاذب الأقطاب المختلفة وتتنافر المتماثلة. وإن قطعت مغناطيسًا إلى نصفين، ستحصل على مغناطيسين، لكل واحد منهما قطبيه الشمالي والجنوبي الخاصين به. ويمكننا تصوير الحقل المغناطيسي على شكل خطوط تخرج من قطبه الشمالي وتدخل في الجنوبي.

تعتمد قوة أو شدة الحقل على المسافة، وكلما اقتربتَ من المغناطيس زادت الشدة. ونقيس هذه الشدة بوحدة تسمى تسلا (نسبة إلى الفيزيائي الفريد: نيكولاي تسلا). ولكن إياك أن تغترّ بالأحجام! فالحقل المغناطيسي للأرض أضعف بألف مرة من الحقل الخاص بالمغناطيس الذي على برادك. ولكن يجب عليك أن تعرف أيضًا أن الثِقالة (الجاذبية) هي ما تبقي قدميك على الأرض، لا المغناطيسية.

ميول مغناطيسية

كنا قد تعلمنا أنه حين يُذكر المغناطيس فنفكر فورًا بمعدن الحديد. أما سائر المعادن (كالنحاس والذهب والفضة والألمنيوم) وغير المعادن (كالورق والخشب والزجاج والبلاستيك) فتبدو لنا غير مغناطيسية (غير قابلة للمغنطة أي لا تتأثر بالحقل المغناطيسي). لكن الحديد ليس وحده من يملك هذه الخاصية. فالنيكل والكوبلت وبعض عناصر الجدول الدوري (المعروفة بالعناصر الأرضية النادرة) تمتلك خصائص مغناطيسية قوية أيضًا. ويمكن صنع مغانط خارقة منها ومن خلائطها. يمتلك الألومنيوم أيضًا خصائص مغناطيسية، ولكنها ضعيفة جدًا بحيث تصعب ملاحظتها.

هناك مغانط دائمة كالمغناطيس الذي عثر عليه راعينا ماجنس (معدن الماجنيتيت). ومغانط مؤقتة كمسمار الحديد الذي يلفه سلك يمر به تيار كهربائي. ولكن التقسيم العلمي الأساسي للمواد من حيث الخاصية المغناطيسية هو:

1- مواد بارامغناطيسية (ذات المغنطة المسايرة Paramagnetism)

وهي المواد التي تتفاعل بشكل إيجابي، أي تكتسب خاصية مغناطيسية في وجود حقل مغناطيسي (أي مغناطيس مجاور لها مثلًا) ويعتبر معدن الحديد أشهرها. لكن الألمنيوم بل وأكثر اللا معادن التي قد تحسبها غير مغناطيسية تندرج في الواقع تحت هذا القسم. فهي بارامغناطيسية ولكن بشكل ضعيف جدًا. وتعتمد هذه الخاصية على درجة حرارة المعدن، فكلما زادت درجة حرارته قلت خصائصه البارامغناطيسية.

وكما أسلفنا فالحديد وبعض العناصر الأرضية النادرة هي  عناصر بارا مغناطيسية  قوية. حيث أنها تحتفظ بخصائصها المغناطيسية حتى بعد زوال الحقل المحرض. ولكنها تفقد مغنطتها إن تم تسخينها فوق درجة حرارة معينة (تسمى حرارة كوري نسبة إلى العالم الفرنسي بيير كوري). حرارة كوري الخاصة بالحديد هي 770 مئوية. فإن أنت سخنت مغناطيسًا حديديًا إلى درجة حرارة 800  مئوية فلن يعود مغناطيسًا. أما حرارة كوري الخاصة بالنيكل فهي 355 مئوية.

2- المواد الدايامغناطيسية (ذات المغنطة المغايرة  Diamagnetism)

وهذه الخاصية تعتبر عكس البارامغناطيسية. يمكنك محلاظتها عندما تقترب بمغناطيس من كرة جرافيت وستلاحظ كيف تبتعد الكره عنه. لا يهمّ هنا إن كنت تدنو بالقطب الشمالي أو الجنوبي. فهذه المواد (الماء من بينها! ومعظم المواد العضوية كالبنزين مثلًا) تكره  المغانط. وتحول نفسها إلى مغانط مؤقتة لتقاوم التمغنط وتدفع الحقول المغناطيسية بعيدًا عنها.

وقد استعان الفيزيائي الشهير “جيمس ماكسويل” بما تم اكتشافه حول القوة المغناطيسية في صياغة معادلاته الشهيرة. والتي اشتهرت بأنها أعظم معادلات في التاريخ.


Exit mobile version