هل يمتلك الفراغ كتلة؟

علي جزيرة سردينيا -والتي تعد أكثر المناطق استقرارًا في البحر الأبيض المتوسط إلى عمق 110 أمتار تحت الأرض- يقودنا الظلام الدامس عبر نفق ضيق نحو غرفة حيث تسجل أجهزة قياس الزلازل الحركات الدقيقة للأرض المحيطة. ويظهر على الجانب الأيسر من هذا النفق كهف. حيث اختاره الفيزيائيون لإنشاء تجربة أرخميدس التي تتطلب عزلة شديدة عن البيئة الخارجية للتحقيق في أسوأ تنبؤ نظري في تاريخ الفيزياء – مقدار الطاقة في الفضاء الفارغ الذي يملأ الكون. أو بالمعنى الأصح، لقياس كتلة الفراغ ، فما هي تجربة أرخميدس؟ ولماذا سميت بتلك الاسم؟ وما الهدف منها؟

ما هو الفراغ؟

الفراغ في الفيزياء هو مفهوم مهم يُشير إلى المنطقة التي تفتقر إلى المادة. يمكن وصف الفراغ ببساطة على أنه المنطقة الخالية تمامًا من المادة والذرات. على الرغم من أن الفراغ قد يبدو فارغًا تمامًا بالنسبة لنا، إلا أنه يحمل مفاهيم معقدة وأثر كبير على العلوم الفيزيائية. و هناك نوعان رئيسيان من الفراغ في الفيزياء:

1. الفراغ الكلاسيكي

 يعتبر الفراغ الكلاسيكي هو الفراغ الذي نتخيله بشكل عام، حيث يُفترض أنه ليس فيه أي شيء. ومع ذلك، في الفيزياء الكلاسيكية، تمثل الفكرة الأساسية للفراغ الكلاسيكي الفراغ الذي يحتوي على مجموعة من الحقول المتعلقة بالمجالات الفيزيائية مثل الجاذبية والكهرومغناطيسية. هذه الحقول تكون موجودة حتى في الفراغ الكلاسيكي ويمكن أن تنتقل عبره.

2. الفراغ الكمومي

 في الفيزياء الكمومية، ندرك أن الفراغ ليس بالضرورة خاليًا من أي شيء. بالعكس، الفراغ الكمومي يمكن أن يكون مليئاً بتذبذبات وجسيمات صغيرة تنشأ على مستوى الكم. هذه التذبذبات والجسيمات الظاهرية تسمى “الجسيمات الافتراضية”، وتنشأ بموجب مبدأ عدم اليقين. في الفراغ الكمومي، يمكن للجسيمات الافتراضية أن تظهر وتختفي دون سبب ظاهر، وهذا ما يعكس مبدأ عدم اليقين في الفيزياء الكمومية. [1]

بالإضافة إلى الفراغ الكمومي والكلاسيكي، هناك العديد من النظريات والمفاهيم الأخرى التي تتعلق بالفراغ في الفيزياء مثل مفهوم الطاقة المظلمة والفراغ الفضائي في نظرية النسبية الخاصة والعامة. يجد العلماء أن الفراغ هو مفهوم معقد يمكن أن يؤثر على الكون ويشكل جزءًا مهمًا من البحث والاستكشاف في الفيزياء الحديثة.

الجسيمات الافتراضية والتذبذبات الكمومية

لنتخيل الفراغ كما لو أنه ليس فعلا فارغًا بالمعنى التقليدي الذي نستخدمه في حياتنا اليومية. ولكنه بيئة دقيقة مليئة بالنشاط والحركة على المستوى الأدنى. في هذا الفراغ الكمومي، ينشأ اهتزاز وحركة دائمة لجسيمات صغيرة جداً تعرف بـ “الجسيمات الافتراضية”، والتي يفترض وجودها بناءً على مبادئ الفيزياء الكمومية. فلو كنت تراقب هذا الجو الكمومي بعين مكبرة، ستلاحظ وجود حركة مستمرة لهذه الجسيمات الافتراضية. لكن عندما تحاول أن تلتقط إحداها أو تقيس موقعها أو سرعتها بدقة، ستجد نفسك في مواجهة مفهوم عدم اليقين الكمومي. هذا يعني أنه لا يمكنك أبدًا معرفة مكانها بدقة تامة في أي لحظة معينة، فقد تكون هنا أو هناك أو في أي مكان آخر في نفس الوقت!

 يمكن للباحثين حساب طاقة الفراغ بطريقتين. حيث يمكنهم استخدام معادلات ألبرت أينشتاين في النسبية العامة لحساب مقدار الطاقة اللازمة لتفسير حقيقة أن الكون يتوسع بمعدل متسارع. ويمكنهم أيضًا العمل من الأسفل إلى الأعلى، باستخدام نظرية المجال الكمي للتنبؤ بالقيمة بناءً على كتل جميع “الجسيمات الافتراضية” التي يمكن أن تنشأ لفترة وجيزة ثم تختفي في الفضاء “الفارغ”. تٌنتج هاتان الطريقتان أرقامًا تختلف بأكثر من 120 مرة (1 متبوعًا بـ 120 صفرًا). حيث يعتبر هذا تناقض سخيف إلى حد محرج وله آثار مهمة على فهمنا لتوسع الكون، وحتى مصيره النهائي. ولمعرفة أين يكمن الخطأ، يقوم العلماء بنقل غرفة مفرغة أسطوانية يبلغ طولها مترين ومعدات أخرى إلى منجم قديم في سردينيا، حيث يحاولون إنشاء فراغ خاص بهم ووزن “اللاشيء”_ كتلة الفراغ _ بداخله.

كيف يؤثر مبدأ عدم اليقين على فهمنا للعالم الصغير؟

ينص المبدأ على أنه لا يمكنك تحديد موضع الجسيم وسرعته في نفس الوقت بأي دقة. فكلما زادت دقة معرفتك لقيمة واحدة، قلّت قدرتك على معرفة القيمة الأخرى. وينطبق هذا المبدأ أيضًا على قياسات أخرى، مثل تلك التي تتضمن الطاقة والوقت. وهذا يعني أن الطبيعة يمكنها “استعارة” الطاقة لفترة زمنية قصيرة للغاية. هذه التغيرات في الطاقة، والمعروفة باسم تقلبات الفراغ Vacuum fluctuation، غالبا ما تأخذ شكل جسيمات افتراضية، والتي يمكن أن تظهر من العدم وتختفي مرة أخرى على الفور. [2]

يجب أن تحترم تقلبات الفراغ بعض القواعد. على سبيل المثال، لا يمكن لشحنة كهربائية واحدة أن تظهر فجأة في حالة عدم وجودها (فهذا من شأنه أن ينتهك قانون حفظ الطاقة). وهذا يعني أن الجسيمات المتعادلة كهربائيًا مثل الفوتونات فقط هي التي يمكنها الخروج من الفراغ من تلقاء نفسها. يجب أن تظهر الجسيمات المشحونة كهربائيًا مقترنة بمطابقاتها المضادة للجسيمات. على سبيل المثال، يمكن للإلكترون أن يظهر مع البوزيترون ذي الشحنة الموجبة؛ حيث تلغي الشحنتان بعضهما البعض للحفاظ على الشحنة الإجمالية صفر. والنتيجة هي أن الفراغ يمتلئ بشكل مستمر بتيار من الجسيمات قصيرة العمر.

تأثير كازيمير

وحتى لو لم نتمكن من التقاط هذه الجسيمات الافتراضية في أجهزة الكشف، فإن وجودها قابل للقياس. أحد الأمثلة على ذلك هو “تأثير كازيمير”، الذي تنبأ به الفيزيائي الهولندي هندريك كازيمير في عام 1948. ووفقا لحساباته، يجب أن تتجاذب لوحتان معدنيتان موجهتان ناحية بعضهما البعض في الفراغ، حتى من دون الأخذ في الاعتبار قوة الجاذبية الطفيفة التي يمارسها كل منهما على الآخر. ويرجع سبب ذلك التجاذب إلي الجسيمات الافتراضية.

إن وجود الصفائح يفرض حدودًا معينة يمكن أن تخرج عندها الجسيمات الافتراضية من الفراغ. فعلى سبيل المثال، لا يمكن للفوتونات (جسيمات الضوء) ذات طاقات معينة أن تظهر بين الألواح. وذلك لأن الصفائح المعدنية تعمل كالمرايا التي تعكس الفوتونات ذهابًا وإيابًا. وبالتالي، ستنتهي الفوتونات ذات الأطوال الموجية المحددة بتداخل قيعان الموجات مع قمم الموجات، مما يؤدي إلى إلغاء نفسها بشكل فعال. وسيتم تضخيم الأطوال الموجية الأخرى إذا تداخلت قمتي موجيتين. والنتيجة هي تفضيل طاقات معينة، وقمع طاقات أخرى كما لو أن تلك الفوتونات لم تكن موجودة أبدًا. وهذا يعني أن الجسيمات الافتراضية التي لها قيم طاقة معينة هي فقط التي يمكنها التواجد بين الصفائح. ولكن خارجها، يمكن لأي جسيمات افتراضية أن تظهر. [3]

والنتيجة هي أن هناك احتمالات أقل -وبالتالي عدد أقل من الجسيمات الافتراضية – بين الصفائح مقارنة بما حولها. و تمارس الوفرة النسبية للجسيمات في الخارج ضغطًا على الصفائح، مما يؤدي إلى ضغطها معًا. وهذا التأثير، رغم غرابته، قابل للقياس. وأكد الفيزيائي ستيفن لامورو هذه الظاهرة تجريبيا في جامعة واشنطن في عام 1997، بعد مرور 50 عاما تقريبا على تنبؤ كازيمير. ويأمل الفيزيائيون الآن في استخدام تأثير كازيمير لقياس كتلة الفراغ.

ولهذه الطاقة عواقب مهمة على الكون ككل. تخبرنا النسبية العامة أن الطاقة (على سبيل المثال، في شكل كتلة) تؤدي إلى انحناء الزمكان. وهذا يعني أن الجسيمات الافتراضية، التي تغير طاقة الفراغ لفترة قصيرة، لها تأثير على شكل الكون وتطوره. و عندما أصبح هذا الارتباط واضحًا لأول مرة، أمل علماء الكونيات أن يحل لغزًا كبيرًا في مجالهم، وهو قيمة الثابت الكوني، وهي طريقة أخرى لوصف طاقة و كتلة الفراغ في الفضاء.

تأثير الطاقة الفراغية على القوانين الكونية

الثابت الكوني

نشر أينشتاين نظريته النسبية العامة في عام 1915، لكنه سرعان ما أدرك أن لديه مشكلة. يبدو أن النظرية تتنبأ بتوسع الكون. لكن علماء الفلك في ذلك الوقت اعتقدوا أن كوننا كان ساكنًا، أي أن الفضاء له حجم ثابت وغير متغير. وبعد ثلاث سنوات من نشر النظرية، وجد أينشتاين أنه يستطيع إضافة مصطلح يسمى الثابت الكوني إلى معادلاته دون تغيير القوانين الأساسية للفيزياء. وبالنظر إلى القيمة الصحيحة، فإن هذا المصطلح سيضمن عدم توسع الكون أو انكماشه.

ومع ذلك، في عشرينيات القرن الماضي، استخدم عالم الفلك إدوين هابل أكبر تلسكوب في ذلك الوقت، تلسكوب هوكر في مرصد ماونت ويلسون في كاليفورنيا، لملاحظة أنه كلما كانت المجرة بعيدة عن الأرض، بدا أنها تنحسر بشكل أسرع. وكشف هذا الاتجاه أن الفضاء كان في الواقع يتوسع. وتجاهل حينها أينشتاين الثابت الكوني، ووصفه بأنه “حماقة”.

وبعد أكثر من نصف قرن، حدث تطور آخر. فمن خلال مراقبة المستعرات العظمي البعيدة، أثبت فريقان من الباحثين بشكل مستقل أن الكون لا يتوسع فحسب، بل إنه يفعل ذلك بمعدل متسارع. القوة التي تدفع الفضاء بعيدًا سُميت منذ ذلك الحين بالطاقة المظلمة. إنها بمثابة نوع من النظير للجاذبية، حيث تمنع جميع الأجسام الضخمة من الانهيار في نهاية المطاف في مكان واحد. ووفقا للتنبؤات النظرية، تمثل الطاقة المظلمة حوالي 68% من إجمالي الطاقة في الفضاء. عند هذه النقطة، عاد الثابت الكوني إلى الساحة كتفسير محتمل لهذا الشكل الغامض من الطاقة. ويعتقد أن الثابت الكوني بدوره يحصل على طاقته من الفراغ. [4]

في البداية، كان المجتمع العلمي سعيدًا، إذ بدا أن ثابت النسبية العامة هو نتيجة لطاقة الجسيمات الافتراضية في الفضاء الفارغ. لكن الفرحة لم تدم طويلا. عندما أجرى العلماء الحسابات، تبين أن طاقة الفراغ المستندة إلى نظرية المجال الكمي أكبر بكثير ( أكبر 120 مرة من حيث الحجم ) من قيمة الثابت الكوني المستمدة من قياس توسع الكون. وأفضل طريقة لحل هذا التناقض هي قياس الطاقة الموجودة في الفراغ مباشرة، عن طريق تقييم كتلة الفراغ . أي وزن الجسيمات الافتراضية.

تجربة أرخميدس لقياس طاقة الفراغ

ليست فراغ كما كان يعتقد

إذا كانت طاقة الفراغ المستمدة من نظرية الكم صحيحة، فلا بد أن هناك شيئًا ما يكبح تأثيرات هذه الطاقة على توسع الفضاء. لو كانت هذه القيمة هي القوة الحقيقية للطاقة المظلمة، لكان الفضاء يتضخم بشكل أسرع بكثير. ومن ناحية أخرى، إذا كانت القيمة المستمدة من علم الكونيات صحيحة، فإن الفيزيائيين يبالغون إلى حد كبير في تقدير مقدار الطاقة التي تساهم بها الجسيمات الافتراضية في الفراغ.

إن وجود تقلبات الفراغ والجسيمات الافتراضية قد تم قبوله على نطاق واسع على الأقل منذ ظهور تأثير كازيمير. كما أن القوة المتوقعة لنظرية الكم بالنسبة للتقلبات لا يمكن أن تختفي تمامًا، لأن التجارب المعملية تؤكد النظرية بدقة كبيرة. ولكن هل من الممكن أن الجسيمات الافتراضية لا تنجذب فعليًا بالطريقة التي نفكر بها، وبالتالي لا تؤثر على كتلة الفراغ كما نتوقع؟

حتى الآن لم يتم إجراء قياسات مباشرة لكيفية تصرف الجسيمات الافتراضية فيما يتعلق بالجاذبية. واقترح بعض العلماء أنها قد تتفاعل مع الجاذبية بشكل مختلف عن المادة العادية. على سبيل المثال، في عام 1996، قام الفيزيائيان ألكسندر كاجانوفيتش وإدواردو غندلمان من جامعة بن غوريون بوضع نموذج نظري لا يكون لتقلبات الفراغ فيه أي تأثير جاذبية. قد يكون هذا هو الحال إذا كانت هناك أبعاد إضافية تتجاوز الأبعاد الثلاثة المعتادة للمكان وواحدًا للزمان التي نعرفها. قد تؤدي هذه الأبعاد الخفية إلى تعديل سلوك الجاذبية على مقاييس صغيرة جدًا. ومع ذلك، لا يمكن تفسير الاختلافات الكتلية في النوى الذرية لعناصر مثل الألومنيوم والبلاتين إلا إذا ساهمت تقلبات كمية معينة _ كتلة الفراغ _ في وزنها. ولهذا السبب فإن العديد من علماء الفيزياء مقتنعون بأن الجسيمات الافتراضية تتفاعل مع الجاذبية تمامًا كما تفعل الجسيمات العادية. [5]

مخطط تجربة أرخميدس

للتحقق من أن الجسيمات الافتراضية تتفاعل مع الجاذبية مثل المادة العادية، يريد أعضاء فريق أرخميدس استخدام تأثير كازيمير لقياس كتلة الفراغ بميزان شعاع بسيط. سيوضع الميزان داخل حجرة مفرغة من الهواء، وهي عبارة عن حاوية أسطوانية تحتوي على “لا شيء”. وسيتم وضعها في عدة طبقات من العزل لإبقائها شديدة البرودة ومحمية من البيئة الخارجية. وهذه الطبقات، بدورها، ستستقر عميقًا داخل كهف سردينيا، لتحمي الجهاز الدقيق من كل تأثير محتمل للعالم الموجود فوق الأرض. هذه الحواجز ضرورية لأن العلماء يبحثون عن إشارة دقيقة، وهي الحركة الطفيفة للميزان عند تشغيل تأثير كازيمير، مما يؤدي إلى تغيير وزن مادة العينة عن طريق تغيير عدد الجسيمات الافتراضية بداخلها. [6]

في عام 1929، تساءل الفيزيائي ريتشارد تولمان عما إذا كان من الممكن وزن أشكال معينة من الطاقة (وركز على الحرارة). وبعد سبعة عقود فكر كالوني ( قائد مشروع أرخميدس) في دفع الفكرة إلى الأمام. بعد قراءة ورقة فنية كتبها الفيزيائي الراحل ستيفن واينبرغ. حيث تصور طريقة لقياس كتلة الفراغ باستخدام مبدأ أرخميدس، الذي ينص على أنه عندما يكون الجسم مغمورًا في السائل، فإنه يتعرض لقوة طفو لأعلى تساوي وزن السائل. إذا كانت الجسيمات الافتراضية لها وزن، فإن تجويف الصفائح المعدنية في الفراغ يجب أن يواجه قوة طفو. ويقوم التجويف بشكل أساسي بإزاحة الفراغ العادي، بجسيماته الافتراضية الوفيرة، بفراغ أخف يحتوي على عدد أقل من الجسيمات الافتراضية. وبالتالي فإن تحديد قوة الطفو، التي تعتمد على كثافة الجسيمات الافتراضية، سيكشف عن وزنها!

ولقياس هذه القوة داخل الأنبوب المفرغ، علق الباحثون عينتين مصنوعتين من مواد مختلفة من ميزان يبلغ طوله مترين وعرضه 1.50 متر، ويحفزون تأثير كازيمير داخل واحدة. و للقيام بذلك، قاموا بتسخين كلتا المادتين على فترات منتظمة بحوالي أربع درجات مئوية ثم تبريدهما مرة أخرى. يعد هذا الاختلاف في درجة الحرارة كافيًا لواحدة من العينات للتبديل ذهابًا وإيابًا بين مرحلة التوصيل الفائق (عندما تتدفق الكهرباء بحرية داخل المادة) ومرحلة عازلة (عندما لا يمكن للكهرباء التدفق بسهولة). أما المادة الأخرى فتظل دائمًا عازلًا.

مع تغير الموصلية في العينة الأولى، فإنها تعمل مثل النموذج الكلاسيكي المكون من لوحتين (تأثير كازيمير السابق ذكره)، ويختلف عدد الجسيمات الافتراضية المحتملة داخلها. وبالتالي فإن قوة الطفو تزداد وتنخفض بشكل دوري على الوزن الأول. من المفترض أن يؤدي هذا الاختلاف إلى تأرجح الميزان على فترات منتظمة، مثل الأرجوحة التي يجلس عليها طفلان.

أثناء التخطيط للتجربة، كان العلماء بحاجة إلى العثور على مادة مناسبة يمكن تسخينها وتبريدها بشكل منتظم وسريع، وتظهر تأثير كازيمير قويًا. وبعد النظر في عدة خيارات، اختار الفريق بلورات فائقة التوصيل تسمى النحاسات Cuprates. والعينات الناتجة عبارة عن أقراص يبلغ قطرها حوالي 10 سنتيمترات ولا يزيد سمكها عن عدة ملليمترات. حتى الآن، لم يثبت أحد أن تأثير كازيمير يعمل في الموصلات الفائقة ذات درجة الحرارة العالية، لكن العلماء يراهنون على ذلك.

قام الباحثون بضبط الميزان بحيث يتم تعليقه بحرية في الفضاء داخل حجرته المفرغة، والتي سوف تبرد الجهاز بأكمله إلى أقل من 90 كلفن (أقل بقليل من -180 درجة مئوية). سيتم تعبئة الغرفة نفسها في حاويتين معدنيتين أكبر – علبة مملوءة بالنيتروجين السائل، داخل حاوية أخرى خالية من الهواء، والتي تعمل مثل (الترمس). ويبلغ ارتفاع الهيكل بأكمله حوالي ثلاثة أمتار وعرضه وعمقه ويزن عدة أطنان.

تكنولوجيا متقدمة للكشف عن القوة الصغيرة

بدأ كالوني العمل مع زملائه في عام 2002 لتطوير نموذج نظري لحساب قوة الطفو لمختلف النماذج التجريبية. ووجدوا أن القوة في تجربة واقعية ستكون حوالي 10-16 نيوتن. إن قياس مثل هذه القوة الصغيرة يشبه محاولة وزن الحمض النووي في الخلية. في الواقع، يمكن للتكنولوجيا المستخدمة في أجهزة كشف موجات الجاذبية اليوم، والتي رصدت هدفها لأول مرة في عام 2015، أن تساعد في الكشف عن إشارات الجاذبية الصغيرة التي تبحث عنها تجربة أرخميدس. شارك كالوني نفسه في بناء كاشف موجات الجاذبية الإيطالي VIRGO.

ولكي تكون تجربة أرخميدس قادرة على اكتشاف الانحرافات الصغيرة التي تسعى إليها، فإنها ستستخدم نظامين ليزر يشتركان في بعض أوجه التشابه مع إعدادات الليزر والمرايا داخل كاشفات موجات الجاذبية. الأول يقسم شعاع الليزر إلى قسمين عن طريق توجيهه من خلال مقسم الشعاع إلى طرفي المقياس، حيث ينعكسان بواسطة المرايا المرفقة. ثم يتم إعادة تجميع الحزم بواسطة المزيد من المرايا وتنتقل إلى الكاشف. إذا كان الشعاع متوازنًا، فإن الشعاعين سيسافران بنفس المسافة  تمامًا. إذا كانت الذراع مائلة قليلاً في اتجاه واحد، فإن الحزم ستغطي مسافات مختلفة. في هذه الحالة، ستلتقي قمم وقيعان موجات شعاع الليزر في جهاز القياس بطريقة متداخلة، مما ينتج عنه شدة مختلفة Different intensities. ويمكن لهذا النظام اكتشاف حتى أصغر الانحرافات عن التوازن.

تقوم مجموعة ثانية من أجهزة الليزر بقياس اتجاه الميل إذا كانت هناك حركة كبيرة. إن النموذج الأولي المبسط للتجربة، والذي يتم إجراؤه في درجة حرارة الغرفة، حساس بالفعل بشكل ملحوظ، وهو ما يبشر بالخير لأداء جهاز أرخميدس النهائي. ولكن حتى مع أنظمة القياس المتطورة هذه، فإن تنفيذ التجربة سيكون صعبًا ولحماية التوازن من العالم الخارجي، احتاج الفيزيائيون إلى موقع به أقل قدر ممكن من النشاط الزلزالي، ومن هنا جاءت سردينيا. الجزيرة لديها مزايا أخرى، فهي ليست مكتظة بالسكان، مما يبقي الضوضاء التي يسببها الإنسان منخفضة. كما أن لديها أكثر من 250 منجمًا مهجورًا، لم يعد الكثير منها قيد الاستخدام، وهو أمر جذاب نظرًا لوجود عدد أقل من الاهتزازات تحت الأرض ولأن درجة الحرارة داخل المنجم مستقرة بشكل خاص.

تم الانتهاء مؤخرًا من الإصدار النهائي لإعداد الميزان وشحنه إلى سردينيا. توجد غرفة الفراغ في موقع الاختبار، لكن غلافيها الخارجيين لا يزالان قيد الإنتاج. عندما يصل الغلافان، سيصبح الكهف جاهزًا، وسينقل العلماء النموذج بأكمله إلى هذه الغرفة المظلمة الموجودة تحت الأرض، ويبدأون في كشف النقاب عن مقدار كتلة الفراغ.

المصادر

1-Virtual Particles
2-Vacuum Fluctuations of Energy Density can lead to the observed Cosmological Constant
3-Science and technology of the Casimir effect
4-A new generation takes on cosmological effect
5-Relativity versus quantum mechanics: the battle for the universe
6-?How Much Does ‘Nothing’ Weigh

كيف استخدمت الموصلية الفائقة في صناعة المجسات الفوتونية ؟

تعمل عيوننا كمجسات للضوء شديدة الحساسية، حيث تعينان شدة الأشعة الساقطة عليهما ولونها وانتشارها في الفضاء. وتمتلك شبكية العين البشرية من (البكسلات) أكثر مما تمتلكه آلة تصوير رقمية. ففي الشبكية نحو ستة ملايين من الخلايا المخروطية التي تتحسس باللون وأكثر من 100 مليون من الخلايا الأسطوانية المسؤولة عن الرؤيا في الظلام. والعيون حساسة جداً، حيث أن خلية واحدة أسطوانية معتادة على الظلام يمكن أن تطلق إشارة إلي الدماغ عند امتصاصها جسيما واحداً من جسيمات الضوء (فوتوناً). والفوتون هو أصغر وحدة كمومية من موجة كهرومغناطيسية. وتلزم ست فقط من إشارات الفوتون الواحد لكي يري الدماغ ومضة. لكن العيون وآلات التصوير التجارية بعيدة عن أن تكون مثالية للعديد من المهمات. لأنها لا تستطيع أن تكشف سوى تلك الفوتونات التي تقع تردداتها في المدي المرئي الضيق. وأكثر من ذلك فإن قدراتها اللونية لا تتضمن قياس التردد المضبوط  لكل فوتون. ومن هنا أتى احتياجنا الكبير لمجسات فوتونية علمية وصناعية قادرة على كشف المجالات الكهرومغناطيسية التي تقع خارج مدي الضوء المرئي. نريد مجسات فوتونية قادرة على التقاط عوالم الأشعة تحت الحمراء والموجات الميكروية، حيث الترددات منخفضة (الأطوال الموجية طويلة، والطاقة منخفضة).

يفتقر العلماء بصورة خاصة، بالنسبة إلي الأطوال الموجية المرئية والأطول منها، إلي أجهزة قادرة علي رؤية فوتون منفرد وعلي تمييز تردده، ومن ثم طاقته بأي دقة كانت. حيث إن تعيين تردد الفوتونات يفتح الباب أمام ثروة من المعلومات حول المادة المصدرة لهذه الفوتونات. إن كشف الفوتونات بابتكار مجسات أساسها الموصلية الفائقة، بإمكانها القيام بمثل تلك القياسات الدقيقة وبأمور أخرى غير عادية. إذ أن هذه الأدوات الجديدة تحسن حساسية القياسات على مدى الطيف الكهرومغناطيسي من الموجات الراديوية إلي الضوء المرئي إلي أشعة جاما تحسينا مذهلا.

هشاشة الموصلات الفائقة ودورها في صناعة مجسات فوتونية

من الغريب أن تكون خاصية التوصيلية الفائقة التي نتج عن استخدامها في تطبيقات مثل نقل القدرة الكهربائية، هي بالضبط الميزة التي احتاجها العلماء لصناعة مجسات للفوتونات. فالموصلية الفائقة التي هي سريان التيار الكهربي من دون مقاومة، وتنشأ حين ترتبط الإلكترونات فى مادة مناسبة بعضها ببعض لتشكل ما يسمي أزواج كوبر Cooper pairs.

تسري أزواج كوبر عندئذ كمائع فائق. وهناك تأثير ميكانيكي كمومي مفاده أن الموصلية الفائقة لا تحدث فى المادة إلا حين تُبَرد هذه المادة إلي درجة حرارة منخفضة جداً، وتدعي حرارة التحول الحرجة لتلك المادة. وتبريد المادة ينقص اهتزاز ذراتها. فإذا ارتفعت درجة الحرارة فوق حرارة العتبة (Threshold)، أبعدت الطاقة الحرارية للتصادمات الإهتزازية الإلكترونين الشريكين في أزواج كوبر أحدهما عن الآخر. وأزالت بذلك الموصلية الفائقة. وبسبب هذه الحساسية للحرارة لا بد من تبريد العديد من الموصلات الفائقة إلي درجات قليلة فقط فوق الصفر المطلق ( درجة 0 كلفن تساوي 273.15-). وتحتاج بعض الأنواع إلي درجات حرارة منخفضة لا تتجاوز أجزاء قليلة من المئة من الكلفن.

هشاشة مفيدة

ولكن هشاشة الموصلية الفائقة بحد ذاتها هي الصفة التي تجعلها مناسبة بصورة مثالية للاستخدام فى المجسات الحساسة. وتعتمد مجسات الفوتونات فائقة الموصلية علي مقدرة طاقة فوتون منفرد علي تمزيق الآلاف من أزواج كوبر. عندئذ يمكن قياس التغير في حالة الموصلية الفائقة بعدة طرق بهدف الكشف عن الطاقة التي أعطاها الفوتون أي لصناعة المجسات الفوتونية. ولما كانت طاقة الفوتون متناسبة مع تردده، فإن هذا القياس يدل علي تردد الفوتون. وهذا هو المفتاح للحصول على معلومات عن الجسم الذي أتى الفوتون منه. [1]

تعمل المجسات شبه الموصلة العاملة عند درجة الحرارة العادية، مثل الأجهزة ذات الشحنات المقترنة Charged-coupled devices الموجودة في آلة تصوير رقمية، بواسطة تشويش حالة كمومية في المادة. ففي حالة الجهاز CCD، يصدم فوتون الضوء المرئي إلكترونا فيخرجه من نطاق طاقة في بلورة شبه موصلة. ولكن الإلكترونات مرتبطة ارتباطا قويا فى هذه النطاقات، لدرجة أن كل فوتون لا يحرر عادة سوي إلكترونا واحد. وهذا التحرير قليل جداً لدرجة أنه لا يكفي لتحديد تردد الفوتون. ونتيجة لذلك لا يستطيع الجهاز CCD تعيين لون الفوتون مباشرة. أما الآلات الرقمية فتشكل صوراً ملونة باستخدامها مجموعة مرشحات، أحدهما أحمر والآخر أخضر والثالث أزرق، ولا تمرر سوى الفوتونات التي تقع تردداتها في هذه المجالات. وعلي النقيض من ذلك، فإن بإمكان فوتون مرئي واحد فصل الآلاف من أزواج كوبر فى الموصل الفائق. ويتيح تكوين آلاف الإثارات قياس الطاقة قياسا دقيقا.

أنواع المجسات الفوتونية فائقة التوصيل

تصنف المجسات التي تعمل علي تحسس تمزق الموصلية الفائقة فى صنفين رئيسيين. النوع الحراري الذي يبرد حتي درجة حرارته الانتقالية بالضبط، وعندها لا يكون إلا جزئيا في حالة الموصلية الفائقة وتكون الإثارات الحرارية علي وشك أن تخرب الموصلية الفائقة كليا. وأي طاقة تُودَع فى الموصل الفائق ترفع درجة حرارته وتسبب ارتفاع مقاومته الكهربائية ارتفاعا ملموسا. أما النوع الأخر، المجسات الفاصلة للأزواج Pair-breaking فهو علي العكس من ذلك، إذ يُبَرد إلى درجة حرارة أخفض من درجة حرارة الانتقال ويكون فى حالة الموصلية الفائقة كليا. ويقيس هذا المجس عدد أزواج كوبر التي تحطمت عند إيداع الطاقة فيه.[2]

المجسات ذات الحافة الانتقالية (TES)

يعتمد النوع الحراري من المجسات الفوتونية علي حقيقة أن المقاومة الكهربائية للموصل الفائق ترتفع بشكل حاد من الصفر إلي قيمتها الاعتيادية فى المدى الضيق جداً من درجة الحرارة الذي تتحول فيه المادة من حالتها فائقة الموصلية إلي حالتها العادية. ويتيح التغير الفجائي فى المقاومة للموصل الفائق أن يعمل عمل ميزان حرارة بالغ الحساسية. ويدعي المجس الذي يستخدم الانتقال الطوري الفائق الموصلية بهذه الطريقة مجساً ذا حافة انتقالية Transition-edge sensor. وحين يمتص المجس TES فوتوناً، تتحول طاقة الفوتون إلي طاقة حرارية ترفع درجة الحرارة ومن ثم تزيد مقاومة المادة بصورة متناسبة مع الطاقة المودعة. ويمكن تبعا للمادة التي تمتص الفوتونات، أن يٌستخدم المجس TES مثل مقياس طيف لقياس طاقة الأشعة السينية وأشعة جاما أو مثل عداد فوتونات عند الأطوال الموجية تحت الحمراء أو حتى المرئية.[3]

تم تطوير أوائل المجسات TES فى الأربعينيات لكنها لم تكن عملية. وكانت المشكلة في أن مدى الانتقال إلي الموصلية الفائقة غالبا ما يكون أقل من جزء من ألف من الدرجة. ولذلك كان من الصعب إبقاء درجة حرارة الجهاز ضمن هذا المدى. وفى عام 1993، تم اكتشاف حيلة بسيطة أمكنت من حل هذه المشكلة. وهي تطبيق جهد كهربي ثابت، وهي تقنية تدعى انحياز الفلطية Voltage biasing. يؤدي الجهد المطبق إلي مرور تيار كهربي عبر المجس TES، وهو ما يرفع درجة حرارته للتسخين. وعند ارتفاع درجة حرارة الانتقال ترتفع المقاومة، و ينقص التيار الكهربي ويتوقف التسخين. وهكذا يعمل التسخين الذاتي ارتجاع Feedback سالب، فيبقي درجة حرارة الغشاء ضمن مجاله الانتقالي. كما أن الارتجاع السلبي يسرع استجابة المجسات. وقد أدي إدخال انحياز الفلطية إلي نمو هائل فى تطوير المجسات الفوتونية TES فى العالم كله.

مجسات الوصلة النفقية فائقة الموصلية Superconducting tunnel junctions

لا يمكن للمجسات الفاصلة لأزواج كوبر أن تعتمد علي التغير فى المقاومة الكهربائية لكي تعطي إشارة امتصاص فوتون. فبخلاف المجس الحراري، يحطم الفوتون الوارد أزواج كوبر ويُكَوِن أشباه جسيمات يمكن اعتبارها بمثابة إلكترونات حرة فى مادة أخري فائقة الموصلية. ويكون عدد أشباه الجسيمات الناتجة متناسبةً مع طاقة الفوتون. ولكن لما كان المجس مبرداً إلي ما دون درجة حرارته الانتقالية بكثير، فلا يزال ثمة بحر من أزواج كوبر السليمة. ولذا تبقي المقاومة الكهربية معدومة. وينبغي أن يحتفظ المجس الفاصل للأزواج بقدرته علي التمييز بين أزواج كوبر وأشباه الجسيمات.

إن أحد الأجهزة القادرة علي القيام بتلك المهمة هو الوصلة النفقية الفائقة الموصلية Superconducting tunnel junctions، المؤلفة من غشائين فائقي الموصلية تفصلهما طبقة رقيقة من مادة عازلة. فإذا كان العازل رقيقا لدرجة كافية (نحو 2 نانومتر)، أمكن للإلكترونات أن تعبر من أحد جانبي الحاجز إلي الجانب الآخر بواسطة خاصية تعرف بالعبور النفقي الكمومي quantum-mechanical tunneling. ويؤدي تطبيق مجال مغناطيسي صغير إلي منع أزواج كوبر من العبور النفقي عبر الوصلة فلا يستطيع العبور إلا أشباه الجسيمات. بعد ذلك يمكن تطبيق جهد كهربي علي الجهاز، فلا يمر تيار إلا حين يمتص أحد الغشائين فائقي التوصيلية فوتوناً يولِد أشباه جسيمات. وتكون نبضة التيار الناتجة متناسبة مع عدد أشباه الجسيمات المستحدثة وإذاً مع طاقة الفوتون وتردده.[4][5]

تطبيقات المجسات فائقة الموصلية

إن المجسات فائقة الموصلية المتاحة اليوم أكثر حساسية 100 إلي 1000 مرة من المجسات العادية التي تعمل عند درجة حرارة الغرفة. وهذه الأجهزة تحسن القياسات فى مدي واسع من المجالات.

منع انتشار الأسلحة النووية والدفاع الوطني

إن إحدي الأولويات الدولية هي مراقبة انتشار المواد النووية التي يمكن أن تستخدم فى هجوم يقوم بيه إرهابيون. وتحتوي المواد النووية على نظائر غير مستقرة تصدر أشعة السينية وأشعة جاما. وتوفر الطاقات المميزة لهذه الفوتونات بصمة تكشف عن ماهية تلك النظائر الموجودة. ولكن لسوء الحظ تصدر بعض النظائر الموجودة فى تطبيقات شرعية وعادية هي الأخرى أشعة جاما ذات طاقات شبيهة بتلك التي تصدرها مواد تستخدم في الأسلحة النووية. وهذا يؤدي إلى تحديد ملتبس وتحذيرات مزيفة. فعلى سبيل المثال، تتمثل الطاقة المميزة لليورانيوم العالي التخصيب فى أشعة جاما ذات طاقة 185.7 كيلو إلكترون فولت الصادرة من يورانيوم 235. لكن أشعة جاما هذه لها نفس الطاقة تقريبا التي تصدر عن الراديوم 226 الموجودة فى الطين فى الحاويات المخصصة للقطط وفى مواد أخري. وهذا يجعل التمييز بين الاثنتين صعبا جدا.

وقد تم تطوير مجسات من قبل مختبر لوس ألاموس الوطني لأشعة جاما مبنية علي أساس تقانة TES وتتمتع بقدرة تمييز طاقية تفوق أكثر من عشر مرات تلك التي للمجسات العادية. إذ تستطيع تلك المجسات فصل عدد أكبر من الخطوط فى أطياف أشعة جاما المعقدة للمواد النووية. وتستطيع التفريق بين اليورانيوم والراديوم والقضاء علي التحذيرات الزائفة.

الكوسمولوجيا (علم الكون)

في السنوات الأخيرة، أتت بعض أهم الاكتشافات حول فهمنا للكون من قياس اشعاع الخلفية الكونية من الموجات الميكروية Cosmic microwave background (CMB). فالفوتونات فى الخلفية الكونية هي صورة لحظية للكون بعد نحو 400000 سنة من الانفجار الأعظم. وهذا بسبب مرور معظم الفوتونات عبر الكون أثناء ال 13 بليون سنة الماضية من دون أي تغير، وأحدثت الموجات الصوتية في بلازما الكون المبكر نماذج إشعاع خلفية CMB يراها الفلكيون اليوم. وقد أظهرت قياسات تلك النماذج، أن 5% من الكون الحالي فقط يتألف من المادة والطاقة العاديتين المألوفتين بالنسبة لنا. وأن نحو 22% هي مادة خفية Dark matter و73% هي حقل غامض يعرف بالطاقة الخفية Dark energy. وقد ساعدت المجسات فائقة الموصلية العلماء علي الوصول إلي طاقات لا يمكن الوصول إليها أبدا بالتجارب الأرضية.

صارت المجسات الفائقة بالإضافة إلي ما تم ذكره من تطبيقات، تستخدم أيضا فى السنكروترونات للتحليل الكيميائي للمعادن في البروتينات وفي عينات أخري. كما ساعدت أيضًا في الكشف الفعال عن بوليمرات بيولوجية كبيرة من شظايا ال DNA، واكتشاف الأدوية وتحليل المركبات الطبيعية. بالإضافة إلي عد الفوتونات عند أطوال موجية تحت الحمراء، المستخدم في الاتصالات.

المصادر

1- Low Temperature particle detectors|
2-Superconducting nanowire single-photon detector
3-Transition-edge sensor
4-Quantum Tunneling
5-Superconducting tunnel junction

ما هي الموصلات الفائقة وتطبيقاتها؟

تعتبر المواد فائقة التصويل مواد توصل الكهرباء بصورة عادية في الظروف الطبيعية. ولكن عند ظروف معينة تتحول تلك المواد لمواد بخصائص كهربية ومغناطيسية فائقة. فما هي الموصلات الفائقة؟ وما هي تطبيقاتها؟

توصيلية الموصلات الفائقة ودرجة الحرارة

تنقسم المواد في الطبيعة، من حيث توصيليتها للكهرباء، لثلاثة أنواع: مواد موصلة للكهرباء ومواد عازلة للكهرباء، وأشباه الموصلات. توصل المواد الموصلة للكهرباء الكهرباء بشكل جيد عكس المواد العازلة، أما أشباه الموصلات فتوصيليتها بين المواد الموصلة والمواد العازلة وتوصل الكهرباء عند معالجتها بشوائب معينة. لكن عام 1911 اكتشف العالم الهولندي «هايك أونز – Heike Onnes» نوع آخر من المواد وهي المواد فائقة التوصيل للكهرباء. [1]

كان أونز يعمل على قياس توصيلية المواد عند درجات الحرارة المنخفضة. ولاحظ عند قياسه لتوصيلية الزئبق عند درجة حرارة 4.2 كلفن، انعدام مفاجئ لمقاومة الزئبق للكهرباء. ويفسر اكتشاف أونز أول خاصية فيزيائية للموصلات الفائقة وهي انعدام مقاومتها الكهربية فجأة عند وصولها لدرجة حرارة معينة. وتوضح الصورة التالية كيف تتغير مقاومة الزئبق خطيا مع درجة الحرارة حتى تصل لنقطة تنعدم فيها المقاومة فجأة.  وتسمي درجة الحرارة التي عندها تتحول المادة لموصل فائق «درجة حرارة حرجة – Critical Temperature».

يوضح الشكل كيف تنعدم مقاومة الزئبق فجأة عند درجة الحرارة الحرجة 4.2 كلفن.

النفاذية المغناطيسية المثالية للموصلات الفائقة

تتميز الموصلات الفائقة بخاصية أخرى عن باقي المواد وهي «النفاذية المغناطيسية المثالية – perfect diamagnetism». وتعني النفاذية المغناطيسية المثالية أن المادة لا يخترقها أي مجال مغناطيسي. وذلك لأن المادة تنشأ مجال مغناطيسي عكس المجال المغناطيسي المؤثر عليها فيلاشي تأثيره. وتسمى تلك الخاصية «تأثير مايسنر – Meissner effect» والتي اكتشفها العالمان الألمانيان «ميسنر – Meissner» و«أوشنفيلد – Ochsenfeld» عام 1933. [2]

توضح الصورة تأثير المجال المغناطيس الخارجي على الماداة في حالة التوصيل الكهربي الطبيعي وفي حالة التوصيل الكهربي الفائق (تأثير مايسنر)

ولكن مع زيادة شدة المجال المغناطيسي المؤثر على المادة فائقة التوصيل، يبدأ المجال باختراق المادة وتتحول بعدها لمادة موصلة عادية. وتسمي شدة المجال المغناطيسي التي عندها تتحول المادة الفائقة التوصيل لموصل عادي «المجال المغناطيسي الحرج – critical magnetic field». في الصورة التالية علاقة بين درجة الحرارة والمجال المغناطيسي يوضح كيف يجب على المادة أن تبقي تحت درجة الحرارة الحرجة والمجال الحرج لتحافظ على توصيليتها الفائقة.

يوضح الشكل الشروط التي تكون عندها المادة فائقة التوصيل.

وبالتالي، الموصلات الفائقة هي مواد موصلة تنعدم مقومتها الكهربية تحت درجات حرارة معينة ولها نفاذية مغناطيسية مثالية.   وليست كل المواد جيدة التوصيل للكهرباء يمكن أن تكون فائقة التوصيل، فالنحاس نفسه ليس من الموصلات الفائقة.

تاريخ تطور الموصلات الفائقة

كان أول اكتشاف للمواد فائق التوصيل الكهربي كما ذكرنا هو مع تبريد العالم أونز للزئبق باستخدام الهيلوم المسال. واكتشاف أونز فتح مجال كامل للبحث في الموصلات الفائقة مثل مادة النيوبيوم عند درجة حرارة 9.3 كلفن وسبائكها عند حوالي 23 كلفن. حتى عام 1986 عندما أحدث العالمان «جورج بيدنورز – Georg Bednorz» و«أليكس مولر – Alex Müller» طفرة في مجال الموصلات الفائقة. أكتشف بيدنورز ومولر الموصلات الفائقة في المواد السيراميكية والذي تصل درجات الحرارة الحرجة لها ل 90 كلفن. مما تسبب في حصولهما على جائزة نوبل في الفيزياء عام 1987. وتسمى الموصلات الفائقة التي تصل درجات حرارتها الحرجة لأعلى من 77 كلفن بالموصلات فائقة في درجات الحرارة العالية (HTSC). [3]

تطبيقات المواد فائقة التوصيل للكهرباء

انعدام مقاومة الموصلات الفائقة لمرور التيار وكونها مواد مغناطيسية قوية جعلت منها مواد ذات مستقبل عظيم في مجالات الصناعة. فخطوط النقل الكهربي يمكن أن تكون باستخدام موصلات فائقة بدلًا من الموصلات العادية. سيوفر ذلك طاقة كبيرة تستهلك في الموصلات العادية، بل وستدوم لمدة أطول من الموصلات العادية. صنع ماتور من مادة فائقة التوصيل يمكن أن يوفر كم أكبر من الطاقة المتولدة، بل وبحجم أصغر بكثير من الماتور العادي. [3]

ونظرًا لاعتماد أجهزة مثل أجهزة التصوير المغناطيسي على المغناطيسات القوية الثابتة الشدة، فإن استخدام الموصلات الفائقة حل مناسب. بالمثل فإن مصادمات الجسيمات حول العالم أيضًا على المغناطيسات القوية وبالتالي فالموصلات الفائقة ستوفر الكثير في صنعها وتطويرها.

يعد القطار المغناطيسي المعلق في اليابان أشهر تطبيق على الموصلات الفائقة. حيث استغلت اليابان قوة النفاذية المغناطيسية للموصلات الفائقة لخلق قطار معلق بدون أي احتكاك مع القطبان.

المصادر

[1] The discovery of superconductivity

[2] New Theory of Superconductivity. Method of Equilibrium Density Matrix. Magnetic Field in Superconductor

[3] The Early Years of Superconductivity

Exit mobile version