مقدمة في نظرية التعقيد الحسابي

ماذا يتبادر إلى ذهنك عند سماع كلمة (التعقيد)؟ شيء صعب، مستحيل، غير مفهوم! فالتعقيد نظرية شهيرة، إذ إن «نظرية التعقيد-Complexity theory» هي نظرية مركزية في علوم الحاسوب، إذ تستخدم نماذج حسابية مثل آلات تورنج للمساعدة في اختبار التعقيد وتساعد علماء الحاسوب على ربط المشكلات وتجميعها وإذا كان من الممكن حل مشكلة ما؛ فإنها ستفتح الطريق لحل مشكلات أخرى معقدة أيضًا ويساعد التعقيد في تحديد مدى صعوبة المشكلة وسبق لنا في مقال سابق أن تحدثنا عن الأنظمة المعقدة على نحو مبسط. لكن هل سبق وسمعت عن نظرية تسمى «التعقيد الحسابي-Computational Complexity»؟ في هذا المقال ستتعرف عليها. لما لها من أهمية عظمى، لكن بدايةً لنبدأ بنبذة عن نشأة وعلماء تلك النظرية…

نبذة عن نشأة نظرية التعقيد الحسابي

وضعا كل من عالم الرياضيات وعالم الحاسوب «يوريس هارتمانيس-Juris Hartmanis» وعالم الحاسوب والرياضيات «ريتشارد ستيرنز Richard E. Stearns» الورقة البحثية الأساسية التي أرست أسس نظرية التعقيد الحسابي.

المحطات العلمية في حياة هارتمانيس

هاجر هارتمانيس إلى ألمانيا في نهاية الحرب العالمية الثانية، ودرس الفيزياء في جامعة فيليبش في ماربورغ قبل انتقاله للولايات المتحدة. نال درجة الماجستير في الرياضيات عام 1951 من جامعة كانساس سيتي ودكتوراه في الرياضيات 1955 من معهد كاليفورنيا للتكنولوجيا. وبدأ بالتدريس في جامعة كورنيل وجامعة ولاية أوهايو قبل أن ينضم إلى مختبر بحوث جنرال إلكتريك 1958 ومن ثم عاد إلى كورنيل لرئاسة قسم الحاسوب الجديد وتقاعد منه كأستاذ في الهندسة عام 1982. وبعد تقاعده انضم إلى مجلس العلوم في معهد سانتا في وهي مجموعة بحثية مستقلة تأسست في 1984؛ لدعم التعاون في دراسة مبادئ التعقيد.

انتُخب هارتمانس لعدة أماكن علمية مرموقة مثل:

  • عضوية الجمعية الأمريكية للعلوم عام 1981.
  • الأكاديمية الوطنية الأمريكية للهندسة عام 1989.
  • الأكاديمية اللاتفية للعلوم عام 1990.
  • أخيرًا، الأكاديمية الأمريكية للعلوم والفنون عام 1992.

إضافة إلى فوزه بميدالية بولزانو الذهبية لأكاديمية العلوم بجمهورية التشيك عام 1995 والميدالية الكبرى لإكاديمية لاتفيا للعلوم 2001 وجائزة تورينج.

المحطات العلمية في حياة ريتشارد ستيرنز

نال ستيرنز درجة البكالوريوس في الرياضيات 1958 والدكتوراه 1961 من جامعة برينستون. عمل بعد ذلك في شركة جنرال إلكتريك في المدّة ما بين 1961 و1978. وشغل منصب أستاذ في جامعة ولاية نيويورك SUNY من 1978 لـ 2000.

بالتعاون مع هارتمانيس، نشرا كتاب «حول التعقيد الحسابي للخوارزميات» في مايو 1956 وقدم ستيرنز مساهمات في تحليل الخوارزميات و«نظرية الأوتوماتا-automata theory» ونظرية الألعاب. أيضًا كتب نظرية البنية الجبرية للآلات المتسلسلة عام 1966 بالتعاون مع هارتمانيس ونظرية Compiler design مع أساتذة علوم الحاسوب بجامعة نيويورك.

الحساب والمعلومات

لنفهم نظرية التعقيد الحسابي، دعونا نبدأ بمعرفة ماهية كلمة (الحساب)، ربما الحساب بالنسبة لأغلبنا 1+1=2. وهذا أول تفسير يتبادر إلى أذهاننا وهذا مثال وليس وصفًا أو تعريفًا لتلك الكلمة. ربما نوضح هذا المثال للأطفال عند سؤالهم. فالحساب هو عملية فيزيائية محدودة بوقت ولمجموعة معينة من الدوال المختلفة. يضخم هذا التعريف من العملية الفيزيائية، ونستخدم هذا التعريف إذ إن معظم الأشياء التي تحسب تكون عادة على هيئات مجموعات. فتمثل الحسابات أيضًا معالجة للمعلومات، لكن ما المعلومات؟ المعلومات هي التي تفسر حالة نظام معين (مجموعة ثابتة من الحالات مختلفة)، فأول وصف لكمية المعلومات قدمه عالم الرياضيات الأمريكي كلاود شانون.

خصائص النظم الحسابية

بعدما تعرفنا على كل من كلمتي المعلومات والحساب المرتبطين بنظرية التعقيد الحسابي، حان الآن أن تتعرف على خصائص النظم الحسابية ومن أهم تلك الخصائص الكثيرة هي:

  • القدرة المعلوماتية (أي كم الدوال في تلك النظم الحسابية ومقدار المعلومات التي يمكن تخزينها).
  • السرعة (المقصود هنا سرعة معالجة النظم الحسابية لملايين البتات من البيانات في الثانية).

كما نوهنا يوجد خصائص لا حصر لها مثل الدقة وتعددية الاستخدامات وغيرها. نهاية، فالهدف من الحساب إيجاد قيم بعض الدوال.

لننتقل لفهم نظرية التعقيد الحسابي وقبلها وجب أن تكون على دراية بالمقالات السابقة في الخوارزميات وأن هنالك دوال قابلة للحساب وأخرى غير قابلة ودعونا نوضح مثال بسيط، لدينا مجموعة من الرؤوس والأضلاع وهنالك مشكلتي المساران المعروفان في نظرية الرسوم البيانية:

الأول، مسار أويلر: هو ذلك المسار الذي يمر بكل حافة مرة واحدة فقط.

الثاني، مسار هاميلتون: المسار الذي يمر بجميع الرؤوس مرة واحدة فقط.

فحلل العلماء المشكلتين وأنه إذا كان لدينا خوارزمية فعالة فستحل المشكلة الأولى ولن تحل الثانية. فهنالك خوارزميات يمكنها حل مشكلات معينة وأخرى لا وذلك متعلق بقابلية الحساب وأن هنالك دوال قابلة للحساب وأخرى لا.

مثال آخر: مشكلة P وNP. إذ تمثل P مجموعة من المسائل التي لها خوارزمية حل وNP المسائل التي ليس لها خوارزمية حل؛ لذلك يمكنك معرفة المزيد من هذا المقال: ما هي حدسية P=NP؟.

نهاية عزيزي القارئ، تعد نظرية التعقيد الحسابي فرع من علوم الحاسوب وتهتم بدراسة الخوارزميات لحل المشكلات الرياضية. ومن بين أهدافها تصنيف المشكلات حسب درجة الصعوبة، أي مدى صعوبة حلها حسابيًا كمشكلتي مسار أويلر ومسار هامليتون.

المصادر

الأنظمة المعقدة وخصائصها

لعلك تتذكر جورجيو باريزي وسيوكورو مانابي وكلاوس هاسلمان الحائزين على نوبل 2021 في الفيزياء ومساهماتهم في فهم الأنظمة المعقدة، ففي كل مجال سواء في الرياضيات أو الفيزياء أو الأحياء أو الاقتصاد… هنالك بعض الأنظمة التي لم يستطع العلماء تفسيرها مثل مجموعات النمل التي تراها، الاقتصاد البشري أو المناخ أو حتى الوعي البشري، الذي ينظر إليه كونه خاصية ناشئة لشبكة معقدة من الخلايا العصبية في أدمغتنا والكثير من الأمثلة، فقد أطلق العلماء على تلك الأنظمة اسم (الأنظمة المعقدة) فهنالك قول أرسطو الشهير: “الكل أكبر من مجموع أجزائه”. إذ إن الأنظمة المعقدة يستلزم فيها السلوك الجماعي لأجزائها لظهور خصائص يصعب استنتاجها. فيأتي علم الأنظمة المعقدة (نظرية التعقيد) ليقدم لنا طرقًا لفهم الكون من حولنا. فدراسة التعقيد نظرية علمية جديدة وفي هذا المقال سنوضح ما هي نظرية الأنظمة المعقدة وخصائصها.

كيف نفهم الأنظمة المعقدة؟

الساعة التي ترتديها بيدك، السلوك المنتظم لها هو الذي سمح لنا بإنشاء جهاز ضبط الوقت. لكن هناك بعض الأنظمة مثل الطقس أو الإنترنت. نحن نفهم هيكلهم لكن من الصعب التنبؤ بسلوكهم، كذلك دماغك معقدة من حيث التركيب والسلوك. فما يتضح لنا أن كلمة التعقيد (معقد) تُطلق على العديد من المكونات المتفاعلة التي من الصعب فهم سلوكها أو هيكلها.

فالأنظمة المعقدة ليست جديدة، لكن لأول مرة في التاريخ تُتاح أدوات لدراسة مثل هذه الأنظمة بطريقة علمية محكمة. فقديمًا، كانت دراسة الأنظمة المعقدة في البيئة أو الاقتصاد تستغرق وقتًا طويلًا أو خطيرة أو باهظة الثمن وغير علمية. لكن الآن وباستخدام الحواسيب، يمكن بناء على سبيل المثال بدائل سيليكون كاملة لهذه الأنظمة ويمكن التلاعب فيها.

مثال على النظرة غير العلمية

افترض أن مستثمرًا فرديًا يتفاعل مع البورصة وبذلك يؤثر على سعر السهم أثناء اتخاذ قرار بالشراء أو البيع أو الاحتفاظ، فيرى هذا المستثمر السوق على أنه معقد أو بسيط اعتمادًا على مدى إدراكه لتغير الأسعار. لكن لتلاحظ هنا أن البورصة أيضًا تعمل على المستثمر. فما يحدث فيها مؤثر على قرارات المستثمر، فهنا السوق يحكم بأن المستثمر لديه درجة معينة من التعقيد؛ تؤثر على تصرفاته مثل التوتر أو الهدوء أو عدم الاستقرار. فهنا يكمن التعقيد في عين المستثمر بقدر ما يكمن في بنية وسلوك النظام نفسه. فمفهوم التعقيد هنا من نظرة أي شخص غير علمية، فالبعض يرى أن الأميبيا أبسط من الفيل.

الخصائص المختلفة المرتبطة بالأنظمة البسيطة والمعقدة

عادة ما تستخدم كلمة التعقيد كاسم لشيء مخالف للحدس أو لا يمكن التنبؤ به أو صعب في فهمه. لذلك وضعت خصائص لوصف الأنظمة المعقدة بعيدًا عن المفاهيم غير العلمية. لنتطرق الآن لبعض تلك الخصائص…

«التنبؤ-Predictability»

لا مفاجآت في الأنظمة البسيطة، أسقط حجرًا؛ فسيقع. ضع أموالك في حساب بنكي فائدته ثابتة؛ ستتراكم الأموال بانتظام… فمثل هذه السلوكيات التي يمكن التنبؤ بها هي من خصائص الأنظمة البسيطة، أما الأنظمة المعقدة لا سلوك متوقع فيها ومليئة بالمفاجآت مثل فتح طرق سريعة جديدة؛ سيؤدي إلى زيادة أوقات التنقل واختناقات مرورية…

«الترابط-Connectedness»

تحوي الأنظمة البسيطة عددًا قليلًا من المكونات مع عدد قليل من المتغيرات مع سيطرة على الروابط بين تلك المتغيرات مثل منظمة ما تتميز بالاستقرار الوظيفي أو المقايضة البدائية حيث تداول عدد قليل من السلع وهي أبسط في الفهم من الاقتصاديات المتقدمة للدول الصناعية التي نعدها من الأنظمة المعقدة.

«التحكم المركزي-Centralized control»

يتركز التحكم في الأنظمة البسيطة في موقع واحد أو عدة مواقع قليلة على الأكثر مثل الشركات المملوكة للقطاع الخاص. على العكس تمامًا، تُظهر الأنظمة المعقدة انتشارًا للسلطة الحقيقة وقد يبدو لك أن لها سيطرة مركزية فتشمل الأنظمة اللامركزية للحكومات والجامعات والإنترنت كذلك… فتميل الأنظمة المعقدة إلى التكيف على نحو أسرع مع الأحداث غير المتوقعة وتُعد أكثر مرونة.

«التحلل-Decomposability»

التفاعلات بين النظام البسيط قليلة أو ضعيفة بين مكوناته المختلفة. فيتصرف النظام على نحو أكثر أو أقل كما كان عليه سابقًا عند قطع بعض الاتصالات. من الناحية الأخرى، فالعمليات المعقدة غير قابلة للاختزال أي لا يمكن أن يتحلل النظام إلى أنظمة فرعية دون خسارة، فإهمال جزء من عملية ما أو قطع الاتصال الرابط بين أجزائها؛ سيُدمر الجوانب الأساسية لسلوك النظام أو هيكله.

وترجع آليات توليد المفاجآت إلى السلوكيات التي تظهرها الأنظمة المعقدة مثل:

«المفارقة-Paradox»

تنشأ المفارقات عادة من الافتراضات الخاطئة التي تؤدي إلى تناقضات بين السلوك المرصود والمتوقع وتحدث في مواقف غير منطقية.

«عدم الاستقرار-Instability»

عند حدوث اضطرابات صغيرة في الأنظمة غير المستقرة، تتولد المفاجآت مثل انهيار أسواق الأسهم.

«غير قابلة للحوسبة-Uncomputability»

إن السلوكيات التي تُظهرها نماذج الأنظمة المعقدة هي نتيجة اتباع مجموعة من القواعد. لأن تلك النماذج مجسدة في حواسيب التي بالضرورة تتبع لقواعد محددة. مع أن آلات الحوسبة تتبع قواعد، فلا يوجد سبب للاعتقاد بأن أي عمليات في الطبيعة أو بشرية تستند بالضرورة لقواعد. فإذا كانت هناك عمليات غير قابلة للحوسبة موجودة في الطبيعة مثل حركة الكتل الهوائية في الغلاف الجوي، فإن الظاهرة الحقيقة لأي نظام لن تظهر على الحاسوب أبدًا لأن تلك الكميات غير القابلة للحوسبة موجودة فعلًا خارج عالم الرياضيات.

«الاتصال-Connectivity»

يتميز النظام بالروابط والتفاعلات بين مكوناته وكذلك تأثير تلك الروابط على سلوكه وهذه إحدى الخصائص. فمثلًا العلاقة بين رأس المال والعمل هي التي توجد الاقتصاد، فالنظام المعقد مترابط ومتصل جيدًا ويكمن التعقيد والمفاجأة في الأنظمة المعقدة في تلك الروابط.

«التولد-Emergence»

تشير إلى الخصائص غير المتوقعة في أية أنظمة فرعية فردية التي تنشأ من التفاعلات. مثل الماء، فخصائصه المميزة في شكله في صورة سائل وعدم القابلية للاشتعال وذلك بالطبع يختلف عن خصائص الغازات المكونة له. فيكمن الاختلاف بين التعقيد الناشئ عن «التوليد-Emergence» في طبيعة التفاعلات بين المكونات.

فلا تركز فقط على ما إذا كان هناك نوع من التفاعلات بل أيضًا على طبيعة تلك التفاعلات فمثلًا لا يمكنك التمييز بين (ماء الصنبور العادي) الذي يتضمن تفاعلًا بين جزيئات الهيدروجين والأكسجين و(الماء الثقيل) الذي يتضمن تفاعلًا بين نفس المكونات لكن مع وجود نظير لمادة الهيدروجين يدعى (ديوتريوم) في هذا المزيج؛ فالتولد من شأنه التمييز، إذ تظهر خصائص معينة (المتولدة) عند تفاعل تلك الأنظمة.

فهذه العناصر هي الخصائص التي هي مصدر توليد المفاجآت.

وهكذا نختم حديثنا عن ذلك العلم الواسع الذي تعرفت فيه على نُبْذَة من شأنها أن تساعدك في فهم المقالات القادمة في الحوسبة الكمية، إذ سنتحدث عن نظرية التعقيد الحسابي؛ فتابعنا.

المصادر

uwaterloo

cssociety

britannica

Exit mobile version