مقدمة في نظرية التعقيد الحسابي

ماذا يتبادر إلى ذهنك عند سماع كلمة (التعقيد)؟ شيء صعب، مستحيل، غير مفهوم! فالتعقيد نظرية شهيرة، إذ إن «نظرية التعقيد-Complexity theory» هي نظرية مركزية في علوم الحاسوب، إذ تستخدم نماذج حسابية مثل آلات تورنج للمساعدة في اختبار التعقيد وتساعد علماء الحاسوب على ربط المشكلات وتجميعها وإذا كان من الممكن حل مشكلة ما؛ فإنها ستفتح الطريق لحل مشكلات أخرى معقدة أيضًا ويساعد التعقيد في تحديد مدى صعوبة المشكلة وسبق لنا في مقال سابق أن تحدثنا عن الأنظمة المعقدة على نحو مبسط. لكن هل سبق وسمعت عن نظرية تسمى «التعقيد الحسابي-Computational Complexity»؟ في هذا المقال ستتعرف عليها. لما لها من أهمية عظمى، لكن بدايةً لنبدأ بنبذة عن نشأة وعلماء تلك النظرية…

نبذة عن نشأة نظرية التعقيد الحسابي

وضعا كل من عالم الرياضيات وعالم الحاسوب «يوريس هارتمانيس-Juris Hartmanis» وعالم الحاسوب والرياضيات «ريتشارد ستيرنز Richard E. Stearns» الورقة البحثية الأساسية التي أرست أسس نظرية التعقيد الحسابي.

المحطات العلمية في حياة هارتمانيس

هاجر هارتمانيس إلى ألمانيا في نهاية الحرب العالمية الثانية، ودرس الفيزياء في جامعة فيليبش في ماربورغ قبل انتقاله للولايات المتحدة. نال درجة الماجستير في الرياضيات عام 1951 من جامعة كانساس سيتي ودكتوراه في الرياضيات 1955 من معهد كاليفورنيا للتكنولوجيا. وبدأ بالتدريس في جامعة كورنيل وجامعة ولاية أوهايو قبل أن ينضم إلى مختبر بحوث جنرال إلكتريك 1958 ومن ثم عاد إلى كورنيل لرئاسة قسم الحاسوب الجديد وتقاعد منه كأستاذ في الهندسة عام 1982. وبعد تقاعده انضم إلى مجلس العلوم في معهد سانتا في وهي مجموعة بحثية مستقلة تأسست في 1984؛ لدعم التعاون في دراسة مبادئ التعقيد.

انتُخب هارتمانس لعدة أماكن علمية مرموقة مثل:

  • عضوية الجمعية الأمريكية للعلوم عام 1981.
  • الأكاديمية الوطنية الأمريكية للهندسة عام 1989.
  • الأكاديمية اللاتفية للعلوم عام 1990.
  • أخيرًا، الأكاديمية الأمريكية للعلوم والفنون عام 1992.

إضافة إلى فوزه بميدالية بولزانو الذهبية لأكاديمية العلوم بجمهورية التشيك عام 1995 والميدالية الكبرى لإكاديمية لاتفيا للعلوم 2001 وجائزة تورينج.

المحطات العلمية في حياة ريتشارد ستيرنز

نال ستيرنز درجة البكالوريوس في الرياضيات 1958 والدكتوراه 1961 من جامعة برينستون. عمل بعد ذلك في شركة جنرال إلكتريك في المدّة ما بين 1961 و1978. وشغل منصب أستاذ في جامعة ولاية نيويورك SUNY من 1978 لـ 2000.

بالتعاون مع هارتمانيس، نشرا كتاب «حول التعقيد الحسابي للخوارزميات» في مايو 1956 وقدم ستيرنز مساهمات في تحليل الخوارزميات و«نظرية الأوتوماتا-automata theory» ونظرية الألعاب. أيضًا كتب نظرية البنية الجبرية للآلات المتسلسلة عام 1966 بالتعاون مع هارتمانيس ونظرية Compiler design مع أساتذة علوم الحاسوب بجامعة نيويورك.

الحساب والمعلومات

لنفهم نظرية التعقيد الحسابي، دعونا نبدأ بمعرفة ماهية كلمة (الحساب)، ربما الحساب بالنسبة لأغلبنا 1+1=2. وهذا أول تفسير يتبادر إلى أذهاننا وهذا مثال وليس وصفًا أو تعريفًا لتلك الكلمة. ربما نوضح هذا المثال للأطفال عند سؤالهم. فالحساب هو عملية فيزيائية محدودة بوقت ولمجموعة معينة من الدوال المختلفة. يضخم هذا التعريف من العملية الفيزيائية، ونستخدم هذا التعريف إذ إن معظم الأشياء التي تحسب تكون عادة على هيئات مجموعات. فتمثل الحسابات أيضًا معالجة للمعلومات، لكن ما المعلومات؟ المعلومات هي التي تفسر حالة نظام معين (مجموعة ثابتة من الحالات مختلفة)، فأول وصف لكمية المعلومات قدمه عالم الرياضيات الأمريكي كلاود شانون.

خصائص النظم الحسابية

بعدما تعرفنا على كل من كلمتي المعلومات والحساب المرتبطين بنظرية التعقيد الحسابي، حان الآن أن تتعرف على خصائص النظم الحسابية ومن أهم تلك الخصائص الكثيرة هي:

  • القدرة المعلوماتية (أي كم الدوال في تلك النظم الحسابية ومقدار المعلومات التي يمكن تخزينها).
  • السرعة (المقصود هنا سرعة معالجة النظم الحسابية لملايين البتات من البيانات في الثانية).

كما نوهنا يوجد خصائص لا حصر لها مثل الدقة وتعددية الاستخدامات وغيرها. نهاية، فالهدف من الحساب إيجاد قيم بعض الدوال.

لننتقل لفهم نظرية التعقيد الحسابي وقبلها وجب أن تكون على دراية بالمقالات السابقة في الخوارزميات وأن هنالك دوال قابلة للحساب وأخرى غير قابلة ودعونا نوضح مثال بسيط، لدينا مجموعة من الرؤوس والأضلاع وهنالك مشكلتي المساران المعروفان في نظرية الرسوم البيانية:

الأول، مسار أويلر: هو ذلك المسار الذي يمر بكل حافة مرة واحدة فقط.

الثاني، مسار هاميلتون: المسار الذي يمر بجميع الرؤوس مرة واحدة فقط.

فحلل العلماء المشكلتين وأنه إذا كان لدينا خوارزمية فعالة فستحل المشكلة الأولى ولن تحل الثانية. فهنالك خوارزميات يمكنها حل مشكلات معينة وأخرى لا وذلك متعلق بقابلية الحساب وأن هنالك دوال قابلة للحساب وأخرى لا.

مثال آخر: مشكلة P وNP. إذ تمثل P مجموعة من المسائل التي لها خوارزمية حل وNP المسائل التي ليس لها خوارزمية حل؛ لذلك يمكنك معرفة المزيد من هذا المقال: ما هي حدسية P=NP؟.

نهاية عزيزي القارئ، تعد نظرية التعقيد الحسابي فرع من علوم الحاسوب وتهتم بدراسة الخوارزميات لحل المشكلات الرياضية. ومن بين أهدافها تصنيف المشكلات حسب درجة الصعوبة، أي مدى صعوبة حلها حسابيًا كمشكلتي مسار أويلر ومسار هامليتون.

المصادر

ما هو التشفير وكيف ستقضي الحواسيب الكمية عليه؟

فقدت شركة أوبر بيانات 57 مليون راكب بالولايات المتحدة، وذلك نتيجة اختراق بيانات الشركة عام2016م. وتعرضت بيانات 600000 سائق للقرصنة، مما جعل الشركة تدفع 100 ألف دولار للمخترقين لكي يدمروا البيانات. وعلاوة على ذلك دفعت 148 مليون دولار لتسوية اتهامات فيدرالية بخصوص الاختراق، كما تم تغريمها بـ385 ألف جنية إسترليني. بالإضافة إلى ذلك تم تغريمها 532 ألف جنية إسترليني من قبل منظمي البيانات في هولندا بسبب نفس الانتهاك. إذ تم سرقة معلومات 174 ألف عميل هولندي. [1,2]

ستساعد الحواسيب الكمية في اختراق المزيد. إذ يوجد حوالي 4.5 مليار مستخدم للإنترنت في عام 2020م، وكل منهم ينقل كمية هائلة من البيانات، في شكل اتصالات مثل البريد الإلكتروني والتفاعلات على شبكات التواصل الاجتماعي والمعاملات التجارية أو الخدمات المصرفية. وكل تلك البيانات حساسة وتحمل معلومات خاصة. كيف نتأكد إذن من سلامة وأمن اتصالاتنا؟ [6]

تجد في هذا المقال مقدمة في التشفير. وجوابا لكيف نحمي البيانات من الحواسيب الكمية؟ كما ستجد مدخلا هاما للتعرف فيما بعد على عمليات الحوسبة التي نحمي بها البيانات الهائلة بواسطة التشفير. لكن أولا ما هو التشفير؟

ما هو التشفير؟

يستخدم التشفير الأمن السيبراني لحماية المعلومات من الهجمات الإلكترونية. ويعمل على تأمين البيانات الرقمية المرسلة على السحابة وأنظمة الكمبيوتر. [6]

يُعد التشفير وسيلة لحماية البيانات الرقمية باستخدم تقنية رياضية أو أكثر، إذ تقوم عملية التشفير بترجمة المعلومات باستخدام خورازمية تجعل المعلومات الأصلية غير قابلة للقراءة. [4,5]

فمثلًا:
يمكن لعملية التشفير تحويل نص عادي إلى نص مشفر. يستطيع المستخدم المصرح له بذلك فقط قراءته، ويمكنه فك التشفير باستخدام مفتاح ثنائي (أو أي مفتاح أُنشأ من مُشفر الرسالة أو النص)، حينها يتحول النص المشفر إلى نص عادي حتى يتمكن المستخدم المصرح له بالاطلاع على البيانات.

التشفير إذن وسيلة مهمة للشركات لحماية معلوماتها الحساسة من القرصنة. فنجد أن مواقع الويب التي تنقل أرقام بطاقات الائتمان والحسابات المصرفية تقوم دائمًا بتشفير المعلومات لمنع السرقة والاحتيال عليك. [4,5]

شروط عملية التشفير

الخوارزميات

هي القواعد أو التعليمات الخاصة بعملية التشفير. ويوجد عدة خوارزميات خاصة بعملية التشفير مثل Triple DES, RAS, and AES.

فك التشفير

عملية تحويل نص مشفر غير قابل للقراءة لنص عادي قابل للقراءة.

المفتاح

سلسلة عشوائية من البتات تستخدم لتشفير أو فك تشفير البيانات. فكل مفتاح يحوى أطوال من البتات مثل 128 بت و256 بت. ويوجد نوعان من المفاتيح: وهي المفاتيح المتماثلة والمفاتيح غير المتماثلة، ولمعرفتهم يجب التعرف على أنوع التشفير. يوجد العديد من الأنواع الأخرى، لكن النوعان الرئيسيان هما التشفير المتماثل والتشفير غير المتماثل. [6,5]

التشفير المتماثل:

هو تقنية يتم فيها تشفير البيانات وفك تشفيرها باستخدام مفتاح تشفير واحد وسري لا يعرفه سوى المستخدمون. يرجع تاريخ التشفير المتماثل للإمبراطورية الرومانية ويعد تشفير قيصر -سمى على اسم يوليوس قيصر- أقدم تشفير موجود، إذ استخدمه لتشفير مراسلاته العسكرية. والهدف من هذا النوع من التشفير هو تأمين المعلومات الحساسة. [5]

يعمل التشفير المتماثل بأسلوبين: التشفير التدفقي والتشفير الكتلي:

يحول التشفير التدفقي النص العادي إلى نص مشفر باستخدام واحد بايت في المرة الواحدة. أما التشفير الكتلي فيحول النص العادي إلى نص مشفر باستخدام وحدات أو كتل كاملة من النص. [5]

أمثلة على طرق التشفيرالمتماثل:

DES
عبارة عن خوارزمية تشفير كتل منخفضة المستوى، إذ تقوم بتحويل نص عادي من 64 بت لنص مشفر باستخدام مفاتيح من 48 بت.

التشفير غير المتماثل (تشفير المفتاح العام):

يستخدم التشفير غير المتماثل مفتاحين يعرفان باسم المفتاح السري (خاص) والمفتاح العام. يستغرق التشفير غير المتماثل وقتًا أطول وتعد البيانات غير المتماثلة أكثر أمانًا، لأنها تستخدم مفاتيح مختلفة لعملية التشفير وفك التشفير، كما أن التشفير غير المتماثل أحدث من التشفير المتماثل. [6,5]

أمثلة على طرق التشفير غير المتماثل:

RSA
وقد سميت على أسماء علماء الكمبيوتر Ron Rivest, Adi Shamir, and Leonard Adleman وهي خوارزمية شائعة لتشفير البيانات بمفتاح عام، وفك التشفير بمفتاح خاص لنقل البيانات بشكل آمن.

PKI
هي طريقة للتحكم في مفاتيح التشفير من خلال إصدار الشهادات الرقمية وإدارتها (الشهادة الرقمية هي بيانات اعتماد الكترونية تستخدم لإثبات الهوية في المعاملات الرقمية). [6,7]

كيف ستدمر الحواسيب الكمية التشفير؟

حذر الخبراء من الحواسيب الكمية بمجرد عملها. إذ ستؤدي العمليات الحسابية بشكل أسرع من الحواسيب التقليدية والتي ستدمر التشفير الذي يحمي بياناتنا، ابتداء بالسجلات المصرفية عبر الإنترنت إلى المستندات الشخصية. وهذا هو السبب الذي جعل المعهد الوطني للمعايير والتكنولوجيا مؤخرًا يحث الباحثين على التطلع “إلى ما بعد الكم”.

أثبتت شركة IBM طريقة تشفير طورتها مضادة للكم. إذ طور الباحثون خوارزميات الكم التي يمكن أن تتفوق على الخوارزميات الكلاسيكية والتي لها القدرة على حل نوعٍ من مشاكل التشفير. ويمكن لتقنية كمية تسمى خوارزمية شور أن تعمل بشكل أسرع في حل المشاكل من الآلات الكلاسيكية وتعني هذه القدرة أن الحاسوب الكمي يمكنه كسر أنظمة التشفير مثل RSA.

تسارع الباحثون لإيجاد طرق جديدة لا يستطيع الحاسوب الكمي معالجتها. وفي عام 2016 أطلق المعهد القومي للمعايير والتقنية (NIST) دعوة لحث الباحثين للبحث في خوارزميات ما بعد الكم المحتملة. في هذا العام أعلن المعهد أنه اختار 69 طلبًا وتم قبول 26 واحد منهم. وتتمثل خطتهم في تحديد الخوارزميات النهائية بحلول 2024.

ومع ذلك لم تنتظر IBM نتائج تلك المسابقة. ففي أغسطس 2019 أعلنت أن باحثيها استخدمو تقنية تسمى CRYSTALS لتشفير محرك تخزين شريط مغناطيسي.

قدمت IBM CRYSTALS إلى مسابقة NIST. على الرغم من أن NIST قد لا تختار في النهاية CRYSTALS كتقنية تشفير معيارية جديدة، إلا أن IBM لا تزال تأمل في استخدامها لمنتاجاتها الخاصة، وتأمل في استخدام هذا النظام لجعل IBM Cloud مقاومًا للكم. [8]

المصادر

[1] cnbc
[2] bbc
[3] edx
[4] investopedia
[5] trentonsystems
[6] ibm
[7] ibm
[8] scientificamerican

من الحمام الزاجل إلى الهاتف المحمول | من وضع أسس المعلومات الحديثة؟

من وضع أسس المعلومات الحديثة؟

اتصالات وحوسبة وتشفير وذكاء اصطناعيّ وتعلم آلي… في عصرنا عصر المعلومات الفضل يعود لعالم عبقري وحيد. إذ قدم إسهامات هامة وفريدة، اسمه قد يكون غريب على مسمعك فهو ليس «ألبرت أينشتاين_Albert Einstein» أو «ريتشارد فاينمان_Richard Feynman» ولم يفز بجائزة نوبل! إنه العالم «كلود شانون_Claude Shannon». ففي ورقة بحثية واحدة، وضع أساسيات الاتصالات التي كانت العمود الفقري لعصر المعلومات الحديث. هل تشعر الآن بفضول للتعرف عليه أكثر وعلى ما قدمه؟ في السطور القادمة سنسرد لك قصته، فهيا بنا…

حياة كلود شانون

ولد كلود شانون في جيلورد بولاية ميشيغان بالولايات المتحدة في عام 1916م. توفي في 24 فبراير 2001، كان والده رجل أعمال محلي ومعلم. تخرج شانون من جامعة ميشيغان بدرجة البكالوريوس في الرياضيات والهندسة الكهربائية في عام 1936م. حصل على منصب باحث مساعد في معهد ماساتشوستس للتكنولوجيا (MIT). عمل مع الباحث الشهير «فانيفار بوش_Vannevar Bush». قد ألهمت فترة التدريب الصيفي التي قضاها شانون في «مختبرات بيل_Bell Labs» الأمريكية للهاتف والتلغراف في مدينة نيويورك عام 1937م مهاراته البحثية. حصل شانون على درجتي الماجستير في الهندسة الكهربائية والدكتوراه في الرياضيات في معهد ماساتشوستس للتكنولوجيا في عام 1940م. إذ ساهم لأول مرة في العمل على أنظمة التحكم في الصواريخ المضادة للطائرات في عام 1941م، وأصبح شانون أستاذًا زائرًا في معهد ماساتشوستس للتكنولوجيا في عام 1956م، وعضوًا دائمًا في هيئة التدريس في عام 1958م.

كلود شانون

الجدير بالذكر أن رسالة الماجستر الخاصة به في معهد ماساتشوستس للتكنولوجيا كانت في الجبر البوليني -هو منسوب للعالم «جورج بول_George Boole»، إذ يتعامل مع القيم المنطقية ويتضمن متغيرات ثنائية، ونستخدمه كمثال في تحليل البوابات والدوائر الرقمية- لتحليل وتركيب دوائر التبديل، حيث حول تصميم الدوائر من فن إلى علم.

من الدخان إلى الحمام الزاجل!

من التواصل بالدخان والنيران، حيث استخدمت القبائل الأصلية في أمريكا الشمالية النيران منذ مئات السنين أو حتى قبل ذلك؛ لنقل الرسائل فمثلًا كانوا يقيمون سُحب صغيرة بالدخان بأشكال مختلفة يمكن أن يكون لكل من رقم السحابة وشكلها والفاصل الزمني بينها معنى محدد. لم يكونوا هم الوحيدين، إذ استخدم الصينيون إشارات الدخان في العصور القديمة لإعطاء تحذيرات بشأن اقتراب العدو وكذلك اليونانيون.

ثم يأتي الحمام ونرى صورته على نقوش في سومر القديمة منذ ما يقرب من 5000 عام. كذلك الخلفاء المسلمون، إذ قاموا بإنشاء خدمة بريد الحمام الزاجل في جميع أنحاء الشرق الأوسط. ولم يتقاعد الحمام الزاجل حتى القرن الماضي. لعب أدوار مهمة في الحربين العالميتين. ومن الدخان إلى الحمام الزاجل ننتقل إلى الهاتف والتلفزيون! سعى البشر لإيجاد طرق تتيح لنا التواصل بشكل أسهل وأسرع، وهنا أتى دور عالمنا شانون الذي كان له دور هام.

رسالة بحثية لفانيفار بوش تغير مسار التاريخ

قام شانون بإرسال رسالة لمعلمه فانيفار بوش في عام 1939م. وضح فيها بعض أفكاره الأولية حول “الخصائص الرئيسة للأنظمة العامة لنقل الذكاء”. بعد عقد من الزمن، نشر شانون نظريته المصيرية. نشر “نظرية رياضة للتواصل” في عام 1948م، فدعونا نتعرف على تلك النظرية…

ما هي النظرية الرياضية في الاتصال؟

وضع شانون نموذج اتصال بسيط وهو أن يقوم المرسل بتشفير المعلومات في إشارة وتلك الإشارة تفسدها الضوضاء ثم يأتي مُستقبل ويفك تلك الإشارة ومن ثم نسمع الصوت واضح. على الرغم من بساطة النموذج إلا أنه شمل رؤيتين وهما عزل مصادر المعلومات والضوضاء عن نظام الاتصال المراد تصميمه، وتصميم هذين المصدرين بشكل احتمالي. تخيل أن مصدر معلومات ينتج العديد من الرسائل الممكنة للتواصل، ولكل منها احتمال معين. أضافت الضوضاء الاحتمالية المزيد من العشوائية لفك لغز المستقبل. قد ركز شانون -عزيزي القارئ- على سؤالين في ورقته البحثية وهما:

  • تحديد الترميز الأكثر كفاءة للرسالة باستخدام أبجدية معينة في بيئة خالية من الضوضاء. ‏
  • ‏فهم الخطوات الواجب تنفيذها في ظل وجود الضوضاء. ‏ما معنى الكلام السابق؟ هذا ما سنتعرف عليه.

شرح نموذج شانون

هناك عدة مكونات في نموذجه ألا وهي:

  • مصدر الرسالة: هو المصدر أو المرجع الذي أنشأ الرسالة غالبًا ما يكون مصدر الرسالة بشريًا ولكن في نموذجه قد يكون حيوانًا أو كمبيوترًا أو أي كائنًا آخر حي أو غير حي.
  • المُشفر: هو الكائن الذي يربط الرسالة بالإشارات المادية الفعالة المرسلة فمثلًا، هناك طرق عديدة لتطبيق هذا النموذج على شخصين بينهما محادثة هاتفية. يمكن اعتبار أن الكلام الذي يقوله شخص واحد هو الرسالة واعتبار الهاتف والإلكترونيات المرتبطة به التي يتواصل من خلالها هي المُشفر. ذلك المُشفر الذي يحول الكلام إلى إشارات كهربائية تنتقل عبر شبكة الهاتف.
  • القناة: هي الوسيلة التي تنقل الرسالة، قد تكون القناة عبارة عن أسلاك أو هواء أو فضاء.
  • الضوضاء: هي التي تعارض إرسال الإشارة فهي بمثابة المانع. يحتوي النظام الواحد على عدة مصادر للضوضاء، لكن إذا تم فهم كل هذه المصادر، سيكون من الممكن التعامل مع كل مصدر على حدى وحل مشكلته.
  • وحدة فك التشفير: هي المسؤولة عن تحويل الإشارة إلى شكل مفهوم يمكن للمستقبل من خلاله فهم الرسالة. جهاز فك التشفير قد يكون سماعة الأذن مثلًا ودوائرها الإلكترونية.
  • المُستقبل: الكائن الذي يحصل على الرسالة.

لاحظ شانون أن مفتاح الاتصال هو «مبدأ عدم اليقين». مثال على مبدأ عدم اليقين، معك عملة عليها رمزان متساويان في الاحتمال إما صورة أو كتابة (على جهاز كمبيوتر مثلًا)، فقبل قذف العملة لا يعرف المُتلقي البيانات وأي رمز سيصدر في الجهاز وحيث يكون المُتلقي لديه حالة نسميها عجز بياناتي. فاستخدم هنا شانون المصطلح المعبر عن العجز البياناتي ألا وهو «عدم اليقين».

بدأ شانون في إطار عدم اليقين والاحتمال، بوضع مفهوم «بت_Bit» المعلومات الذي استخدمها كوحدة أساسية لعدم اليقين وقد كان أول من استخدم الكلمة (على الرغم من قوله أن عالم الرياضيات «جون توكي_John Tukey» استخدمها في مذكرة أولًا).

أهم ما توصل إليه شانون

  • توصل إلى معادلة للحد الأدنى من عدد البتات في الثانية لتمثيل المعلومات، وهو رقم أطلق عليه «معدل إنتروبي». وصياغة مفهوم الإنتروبي في الميكانيكا الإحصائية. يرتبط المفهوم المعلوماتي والديناميكا الحرارية للإنتروبي من خلال مفاهيم الاحتمالات والعشوائية. ذلك الرقم يحدد مقدار عدم اليقين في تحديد الرسالة التي سيولدها المصدر وكلما انخفض معدل الإنتروبي «H»، قل عدم اليقين. أي تقابل القيم الأعلى للإنتروبي الكميات الأعلى من عجز البيانات.
  • قدم معادلة للحد الأقصى لعدد وحدات البت في الثانية التي تتمكن من مواجهة الضوضاء والتي أسماها سعة النظام C وهذا المعدل الأقصى الذي يمكن للمُستقبل من خلاله حل عدم اليقين في الرسالة وفهمها بشكل أسرع.
  • أخيرًا، وضح أن الاتصال الفعال للمعلومات من مصدر يمكن أن يواجهة الضوضاء إذا كانت H <C، فالمعلومات كالماء وإذا كان معدل التدفق أقل من سعة الأنبوب، فسيمر الماء بشكل فعال.

تفسيرات غير منطقية!

إذا كنت تتحدث في مكان يعج بالصخب، فمن المنطقي أن أفضل طريقة تتأكد بها من وصول رسالتك هي أن تكررها عدة مرات. لكن وضح شانون أن ذلك ليس فعالًا للغاية. بالفعل كلما كررت كان الاتصال أكثر فعالية لكنك تضحي بالسرعة من أجل الفاعلية، فوضح أنه يمكن للمرء عدم التكرار وأن التواصل سيتم بشكل أسرع.

 نتيجة أخرى، أنه مهما كانت طبيعة المعلومات فمن الأفضل ترميزها إلى أجزاء قبل إرسالها. في الراديو مثلًا يشير شانون إلى تحويل الموجة الصوتية أولاً إلى وحدات بت، ثم تعيين تلك البتات في الموجة الكهرومغناطيسية بما أن كلا من الصوت والإشارة الكهرومغناطيسية موجات.  تُعد تلك النتيجة هي أساس عصر المعلومات الرقمية الحديث.

في نهاية مقالنا عزيزي القارئ، يمكننا القول بأن شانون اخترع رياضيات جديدة لوصف قوانين الاتصال. إذ وضحت النظرية كيفية إنتاج المعلومات ونقلها -كما وضحنا-. يُعتبر شانون” أب نظرية المعلومات”. فقد أصبحت الآن نظريته هي أساس ما تقوم عليه جميع أنظمة الاتصالات الحديثة: البصرية أو تحت الماء أو حتى بين الكواكب.

المصادر

  1. quantamagazine
  2. britannica
  3. scientificamerican
  4. مقدمة قصيرة جدًا | المعلومات لـ لوتشانو فلوريدي

Exit mobile version