عدسة الجاذبية أحد أغرب الظواهر الفلكية!

ما هو مفهوم عدسة الجاذبية؟

محاكاة تظهر عدسة الجاذبية لثقب أسود عند مروره بين الأرض ومجرة درب التبانة.

عرف علم الفلك الفيزيائي عدسة الجاذبية على أنها انحناء الضوء الصادر عن جسم فضائي بسبب آثار جاذبية الأجرام الفضائية الضخمة عليه. حيث يقع الجرم السماوي الذي يسبب انحناء الضوء بين مصدر ضوء بعيد وبين التليسكوب الموجود في الفضاء. ويعرف هذا التأثير باسم “المفعول العدسي التثاقلي-Gravitational Lensing”. وقد تنبأ العالم ألبرت آينشتاين بمقدار هذا الانحناء في نظريته الشهيرة النسبية العامة.يتأثر مسار الضوء في الفضاء بجاذبية النجوم الضخمة أو الثقوب السوداء. حيث يوجد في الفضاء نجوم مهولة الحجم تصل إلى مئة ضعف حجم الشمس. وبفعل قوى الجاذبية العالية لهذه النجوم التي تفوق شدة جاذبية الشمس ملايين المرات فإن الضوء المار بجانبها يتأثر بجاذبيتها. فينحني مسار الضوء حوله كما ينحني في العدسة. لذلك سميت بعدسة الجاذبية.[1] [2]

طرحت نظرية عدسة الجاذبية لأول مرة عام 1784 على يد العالم البريطاني “هنري كافنديش-Henry Cavendish”. ثم مرةً أخرى عام 1801 على يد العالم الألماني “يوهان جورج فون سولدنر-Johann Georg von Soldner”. حيث قالا بأن نظرية الجاذبية لإسحق نيوتن تتنبأ بأن الضوء في الفضاء سوف ينحني حول جسم ضخم. كما ذكر سابقاً عام 1704 في كتابه البصريات. وقام العالم سولدنر قيمة معدل الانحناء. ثم قام العالم ألبرت آينشتاين عام 1911 باحتساب قيمة الانحناء بالاعتماد على مبدأ التكافؤ فقط. فظهرت النتائج مشابهة لتلك التي خرج بها سولدنر. ولكن عام 1915 قام باحتساب قيمة الانحناء مرة أخرى خلال عملية استكمال النسبية العامة. فظهر بأن نتائج عام 1911 كانت تشكل نصف القيمة الصحيحة فقط. و كان قد أصبح ألبرت آينشتاين بذلك أول من قام بحساب القيمة الصحيحة لانحناء الضوء.[3] [1]

أنواع عدسة الجاذبية

تنقسم عدسات الجاذبية إلى ثلاثة أنواع:

  1. عدسة قوية: حيث نستطيع رؤية تأثيرها عن طريق تشوهات مرئية يمكن رؤيتها بسهولة. مثل عدسة آينشتاين، والأقواس، والصور المتعددة.
  2. عدسة ضعيفة: حيث تكون التشوهات أصغر بكثير من عدسات الجاذبية القوية. حيث لا يمكن إيجادها إلا بتحليل عدد كبير من معطيات التلسكوبات الموجودة في الفضاء. و يتم تحليلها بطريقة إحصائية لإيجاد تشوهات واضحة بنسبة قليلة. حيث تظهر هذه العدسات على أنها امتداد للأجسام بشكل عمودي على مركز العدسة. و لرصد عدسة جاذبية ضعيفة يجب استخدام عدد كبير جداً من بيانات المجرات. وذلك نظراً لشكلها الإهليجي. وبما أن إشارة هذا النوع من العدسات تكون ضعيفة. يمكن احتساب مجال العدسة في أي منطقة. وبالتالي يمكننا ذلك من إعادة ترتيب توزيع الخلفية للمواد في منطقة العدسة. وعلى وجه الخصوص إعادة بناء التوزيع الخلفي للمادة المظلمة.
  3. عدسة صغرية الجاذبية: حيث لا يمكن رصد هذه العدسة، ولا يمكن رؤية أي تشويه في الشكل. ولكن نستدل على هذا النوع من العدسات عن طريق احتساب كمية الضوء المستلمة من جسم موجود خلف العدسة. حيث تتغير وقت مروره من العدسة. [1]

أمثلة على عدسات الجاذبية

العنقود الكروب توسكاني

تم رصد العديد من الأجسام الفضائية التي تصنع جاذبيتها العظيمة تأثير لعدسة الجاذبية. مثل العنقود الكروي “توسكاني-Tucanae47”. حيث يبعد عنا مسافة 13.40 سنة ضوئية. ويبدو لنا من الأرض بأن قطره لا يتعدى قطر القمر. ولكنه في الواقع يشغل مساحة تعادل 120 سنة ضوئية من الفضاء. وهذه الصورة تمثل صورة لنجم سوبر قوة جاذبيته تعادل ضعف قوة جاذبية الشمس مليار مرة. وبذلك يشكل هذا العنقود عدسة جاذبية حوله. حيث تبدو لنا النجوم الواقعة خلفه بصورة انزياحية مشوهة. و تنطبق هذه الصورة على 200 عنقود نجمي كروي في مجرة درب التبانة. وآلاف العناقيد الأخرى في المجرات المجاور لنا. وتعتبر نجوم جميع هذه العناقيد حول نجم سوبر. وهذا ما يجعل كل من صور هذه العناقيد تظهر في حركة دورانية عشوائية وغير متزامنة كما نراها في المجرات.[3]

عدسة الجاذبية للشمس

عام 1936 تنبأ العالم ألبرت آينشتاين بأن أشعة الضوء التي تمر بجانب الشمس والتي تتفادى حوافها. ستنحني على بعد 542 وحدة فلكية من الشمس ( ستتحول إلى نقطة بؤرية ). وبالتالي إذا وضعنا مسباراً عند تلك المسافة أو أبعد فإننا يمكن أن نستخدم الشمس كعدسة جاذبية.[1] [2]

البحث عن عدسات الجاذبية

في الماضي تم اكتشاف معظم عدسات الجاذبية عن طريق الخطأ. حيث أدى البحث عن العدسات في النصف الشمالي من الكرة الأرضية. باستخدام ترددات الراديو في نيو مكسيكو في الولايات المتحدة الأمريكية إلى اكتشاف 22 نظاماً جديداً للعدسات. فأدى ذلك إلى فتح طريق جديد كلياً للبحث عن الأجسام البعيدة جداً، وإيجاد قيم للمعالم الكونية التي تساعدنا على فهم الكون بشكل أفضل. وإذا تم إجراء تلك الأبحاث في النصف الجنوبي من الكرة الأرضية باستخدام أدوات وبيانات عالية المعايرة واضحة المعالم. فيمكن توقع بأن تكون النتائج مشابهة لتلك الظاهرة في الجزء الشمالي.[1]

انفجارات أشعة غاما، أعنف انفجارات الكون

هذه المقالة هي الجزء 6 من 9 في سلسلة رحلة بين 8 ألغاز كونية مذهلة!

تعد «انفجارات أشعة غاما-Gamma rays burst» أعنف وأقوى الانفجارات في الكون، كما شكل رصدها ثورة علمية حقيقية وفتح آفاق واسعة أمام العلماء لحل غموضها. فما هذه الانفجارات؟ كيف تحدث؟ وكيف كاد اكتشافها أن يسبب حرباً عالمية ثالثة؟

اكتشاف انفجارات أشعة غاما

كان اكتشاف انفجارات أشعة غاما مفاجأة حقيقية للعلماء؛ فعلى عكس الكثير من الاكتشافات العلمية لم يسبق وأن توقع وجودها في الكون. أما قصة ذلك فتعود لأيام الحرب الباردة بين الولايات المتحدة الأمريكية والاتحاد السوفيتي في ستينيات القرن الماضي، وتحديداً بعد توقيع الطرفين على معاهدة حظرت إجراء التجارب النووية، فقد تخوف كل منهما من إجراء الآخر تجارباً لقنابل نووية في الغلاف الجوي؛ مما دفع الولايات المتحدة الأمريكية لإطلاق أقمار صناعية للتأكد من ذلك. سميت تلك الأقمار ب «أقمار فيلا الصناعية-vela satellites» وقد اعتمدت في عملها على كواشف لرصد أشعة غاما التي تنتج بشكل رئيسي عن الانفجارات النووية.

حدثت المفاجأة عام 1967 حيث استشعرت الأقمار موجة قوية من الإشعاع، أوه لا بد أنهم السوفييت!

ولكن لحسن الحظ أننا نفهم الفيزياء بشكل كافي لنعرف أن مصدر الإشعاع ليس أرضياً وأنه ليس صادراً عن انفجار نووي؛ وإلا لكان العالم على أبواب حرب عالمية ثالثة!

لكن ما هي أشعة غاما؟

يتدرج «الطيف الكهرومغناطيسي-Electromagnetic spectrum» بدءاً من أمواج الراديو ذات الأطوال الموجية الكبيرة جداً؛ والتي قد تصل لكيلومترات عدة، نزولاً إلى أمواج تبلغ سنتيمترات معدودة والتي تعرف باسم الأمواج الميكروية، والأشعة تحت الحمراء بطول يتراوح بين 5 إلى 10 ميكرون، والضوء المرئي عند نصف ميكرون، ثم الأشعة فوق البنفسجية والأشعة السينية وصولاً لأقصرها وهي أشعة غاما؛ مع طول موجي أقل من نصف قطر الذرة!

الطيف الكهرومغناطيسي

وبما أن أمواجها قصيرة فإن طاقتها عالية جداً وبالتالي ليس من السهل إنتاجها، قد تظن أنه من الممكن ذلك بتسخين جسم ما؛ نعم ذلك صحيح! ولكن ذلك الجسم لن يشع غاما قبل أن يبلغ مئات الملايين من درجات كلفن! ذلك أكثر حرارة من مركز الشمس وأعلى من أي شيء سبق اكتشافه في الكون. لذلك لم يتوقع العلماء رصد أشعة غاما من الفضاء. والآن عن لم يكن السوفييت؛ فمن إذاً؟

دراسات

أجريت دراسات عديدة لحل هذا الغموض، كما اقترحت عدة فرضيات لتفسير هذا القدر الكبير من الطاقة. إلا أن محدودية البيانات شكلت عائقاً في طريق اختيار التفسير الأنسب. كنا قد عرفنا بعض المعلومات فقط، مثل وجود نوعين من هذه الأمواج؛ قصيرة المدة وقوية وأخرى طويلة المدة وضعيفة، وأنها غير موزعة بشكل منتظم في الكون بل وتأتي من كل مكان.

الأمواج الضعيفة طويلة المدة

تتميز هذه الانفجارات بأن جميعها يتبع بانفجار «مستعر أعظم-Supernova» قوي مصحوب بشعاع من الضوء المرئي. يجدر الذكر أن كلمة ضعيفة تعني ضعيفة مقارنة بأمواج غاما الأخرى. أما مقارنة بأي شيء أخر لا تزال قوية جداً، فقد أطلق أحد هذه الانفجارات طاقة هائلة خلال دقائق تعادل ما تطلقه الشمس خلال ثلاثة مليارات سنة!

ومع تطور التلسكوبات، تمكن العلماء من تقدير الكتلة التي تحولت لطاقة لإنتاج هكذا أمواج قوية. بلغت تلك الكتلة حوالي 2.7 كتلة شمسية. والآن، بعدما أصبحنا نعرف هذا القدر من المعلومات؛ بات من الممكن أن نختار النموذج المناسب لتفسير تشكل الأمواج الضعيفة طويلة المدة والذي تبين أنها تشّكل ثقب أسود في المراحل المتقدمة من حياة نجم ثقيل جداً.

الأمواج القوية قصيرة المدة

لعل أكثر ما يميزها عن النوع الآخر أنها لا تتبع بأي انفجار مستعر أعظم. معظمها يحدث في مجرات بيضاوية، ولفهم ذلك تجدر الإشارة إلى أن المجرات البيضاوية عجوزة أي لا تحتوي أية نجوم عملاقة باقية لتشكل ثقوباً سوداء. وهو ما يتعارض مع النموذج المطروح لتفسير الظاهرة.

والتفسير في هذه الحالة أن الانفجار نتج عن اندماج نجمين نيوترونيين تشكلا بانفجار مستعر أعظم عندما كانت المجرة شابة. وفي عام 2020 تم رصد أمواج ثقالية ناتجة عن اندماج مشابه تبين أنه انفجار غاما قوي وقصير المدة.

وما يميز نموذج الاندماج النيوتروني أنه يقدم إجابة لسؤالين مهمين:

أولهما التساؤل عن السبب وراء عدم رؤية ضوء مرئي يتبع الانفجار. وللإجابة عن ذلك، تخيل اندماج نجمين نيوترونيين وتناثر محتوياتهما من مواد ثقيلة ونيوترونات. عند تصادم النيوترونات بذرات العناصر سيتشكل عنصر أقل ثباتاً والذي بدوره سيضمحل. ولكن تتبقى الكثير من النيوترونات بعد؛ بالتالي ستستمر هذه العملية بالتكرر وقد تتمكن من إنتاج أي عنصر تريد مثل اليورانيوم. هذه العناصر الثقيلة المشعة ستستمر بامتصاص الطاقة الناتجة عن الانفجار فلن تر أي ضوء مرئي.

ثانيهما كيفية تشكل المواد الثقيلة، لتلك اللحظة توصل العلماء لطريقة تكون العناصر حتى الحديد في أنوية النجوم الثقيلة. ولكن بقي التساؤل عن تشكل العناصر الأثقل كالذهب مثلاً قائماً. يرجح أنها تشكلت بالطريقة السابقة، حيث استمرت عملية الاضمحلال واصطدام النيوترونات وصولاً للعناصر الأثقل.

أجل؛ يمكن القول أن جرة الذهب لا تقبع أسفل نهاية قوس قزح؛ بل في نهاية انفجار غاما القوي قصير المدة!

المصادر:
annual review
iop science
iop science
oxford academic

Exit mobile version