ما هي مكونات نواة الذرة؟ وكيف تحافظ النواة على استقرارها؟

يبدأ مسار اكتشاف الفيزياء النووية بمعرفة نواة الذرة ومدى استقرارها. فما هي مختلف مكونات النواة؟ وكيف تستطيع النواة الحفاظ على تماسكها دون أن تتفتت إلى الجسيمات التي تكونها؟

النواة ومكوناتها

مكونات النواة

تتكون نواة الذرة من نوعين من الجسيمات: البروتونات وهي موجبة الشحنة، و النيوترونات وهي منعدمة الشحنة. وتتشكَّل البرتونات والنيوترونات بدورها من جسيمات أولية (غير قابلة للتقسيم) سمِّيت الكوارك. يحدِّد نوع الكواركات المكونة للجسيم نوعه والشحنة التي يحملُها. ويتكون البروتون من ثلاثة كوارك، اثنان من النوع العلوي («الكوارك العلوي- up quark ») وواحد من النوع السفلي ((«الكوارك السفلي-down quark»). بينما يتكون النيوترون من كوارك علوي واحد و كواركين سفليين. وتأخذ شحنة كل من النيوترون والبروتون مجموع شحن الكوارك التي تكونها. وبما أن شحنة الكوارك العلوي u هي +2/3  وشحنة الكوارك السفلي  dهي -1/3، فإن شحنة البرتون هي +1 [1].

الشكل 1: البروتون وشحنته.

                               

الشكل 2: النيوترون وشحنته.

النويدات وخصائصها

تسمَّى نواة الذرة في الفيزياء النووية نويدُا أو نيكليدًا. ويرمز لها عادة ب ، حيث يمثل X  رمز العنصر (كربون أو هيدروجين أو غيره)، ويرمز A  لعدد البروتونات والنيوترونات الموجودة في النواة، ويسمى عدد الكتلة،  بينما يرمز Z  للعدد الذري وهو عدد البروتونات المكونة للنواة. وتدعَى النويدات التي تملك نفس العدد الذري Z بـ «النظائر-Isotopes». بينما، تسمَى تلك التي تملِك نفس عدد الكتلة بـ «المتكتلات- Isobars ». وتسمَى النويدات التي تملك نفس عدد النيوترونات N بـ «متساويات النيوترونات-isotone » [1].

ويتم حساب كتلة نواة الذرة بوحدة الكتلة الذرية التي يرمز لها ب u. وتساوي هذه الوحدة 1/12 من كتلة ذرة الكربون 12C [2].

استقرار النواة وحالاتها

تحافظ النواة على استقرارها بفضل القوة النووية التي تجمع نوياتها (البروتونات والنيوترونات)، والتي تعرف أيضًا بـ «التفاعل القوي-strong interaction». وتتميَّز هذه القوة بكونها قصيرة المدى، أي أن كل نوية لا تؤثِر إلا في قريباتها التي تجاورها. وعلى الرغم من قصر مداها. فإن هذه القوة قادرة على التغلب على تنافر البروتونات الذي ينتج عن التفاعل بين شحنها الموجبة. وتتعلق درجة استقرار النواة بالطاقة التي تربط نوياتها. وتختلف طاقة الربط النووية عن المستوى الطاقي التي تتواجد فيه النواة. إذ يحدد هذا الأخير ما إذا كانت النواة مثارة أو في حالتها الدنيا [1].

طاقة الربط النووية

تميز «طاقة الربط النووية B(A,Z) -nuclear binding energy» درجة استقرار النواة. وتتعلق هذه الطاقة بفرق كتلة النواة ككل و مجموع كتل مكوناتها، أو ما يعرف بـ «النقص الكتلي -mass defect » [2].

حيث يمثل N عدد النيوترونات و mnكتلة كل نيوترون.  ويمثل Z  عدد البروتونات و mpكتلة كل بروتون. أما m(A,Z) فتمثل كتلة النواة ككل.
و تمثل B(A,Z)  طاقة الربط النووية. ويمثل   النقص الكتلي. بينما تمثل c2 سرعة الضوء في الفراغ.

وتعرَّف B(A,Z)/A على أنها طاقة الربط لكل نوية، حيث تتزايد درجة استقرار النواة مع تزايد هذه الطاقة. وحسب منحنى الطاقة الممثل في الشكل 3. يمكن أن نلاحظ أن طاقة الربط لكل نوية (وبالتالي درجة استقرار النواة)  تتزايد مع ارتفاع عدد النويات A إلى أن تصل إلى قيمة قصوى (عند A بين 55 و60 ). ثم تعود بعدها فتتراجع مجددًا. ومن هذا التغير، يمكنُنا تفسير سبب اندماج النوى الخفيفة و انشطار النوى الثقيلة. حيث تسعَى النواة في كلتا الحالتين إلى بلوغ الدرجة القصوى لطاقة الربط لكل نوية [1][2].

                                      الشكل 3: طاقة الربط حسب عدد النويات A.

حالات النواة

يمكن أن تتواجد النواة في حالة إثارة أو في «الحالة الدنيا-ground state ». في الحالة الأولى، تملك النواة  فائضا من الطاقة يجعلها في وضع غير مستقر. حيث تتخلص من هذه الطاقة بإصدار فوتون أو بضعة فوتونات. أما في الحالة الثانية، فتكون النواة في وضعها الأكثر استقرارًا، حيث تملك الحد الأدنى من الطاقة [1].

ولا تتعلق حالة الإثارة والحالة الدنيا بكون النواة مشعة أو مستقرة. حيث يمكن أن نجد نواة في الحالة الدنيا لكنها غير مستقرة (مشعة). أما حالة الاستقرار لنواة ما (أي كونها مشعة أم لا)، فإنه يعتمد على طاقة الربط لدى النواة.

ختاما، اقترِحت عدة نماذج في الفيزياء النووية من أجل تفسير استقرار العناصر الموجودة في الطبيعة. فقد حاول كل نموذج تفسير سبب القيمة العالية لطاقة الربط لدى هذه العناصر المستقرة طبيعيًا. وسيكون هذا مدار المقال اللاحق.

اقترحت

المصادر
[1] Basic concepts in nuclear physics
[2] Principles of Radiation Interaction in Matter and Detection

ماذا تعرف عن الطاقة النووية؟

أثارت هذه الطاقة عبر تاريخها المخاوف والشكوك، وكثرت عنها الإشاعات. يعود اكتشاف الطاقة الإشعاعية إلى وليام رونتجن عام 1895م، وقصة اكتشاف «الأشعة السينية-X rays» المشهورة، ولكن ما أثار المخاوف وزاد من الشكوك هو قصف ناغازاكي وهيروشيما بقنبلتين ذريتين كان أينشتاين ومعادلته الشهيرة “E=mc²” سببًا في تصنيعهما.

ما هي الطاقة النووية؟

الطاقة النووية هي الطاقة المنبعثة نتيجة انشطار نووي، أو اندماج نووي، ففي التفاعل النووي تنقسم نواة الذرة إلى عدة أجزاء، وتطلق كمية هائلة من الطاقة، وفي معظم المفاعلات النووية النواة المشطورة هي نواة ذرة اليورانيوم 235 (يرمز الرقم إلى مجموع البروتونات والنيوترونات) لأن ذرة اليورانيوم 235 عند انشطارها تعطي نيوترونين قادرين على شطر ذرتي يورانيوم أخريتين، فيصبح هذا التفاعل تفاعلًا متسلسلًا لا نهائيًا. [3] [5]

سلبيات الطاقة النووية

تعد الطاقة النووية سهلة فيزيائيًا، فمعادلاتها وإن طالت تكون أسهل وأبسط في التطبيق العملي، ولكن أي خطأ قد يكلفنا حياتنا.

من المعروف أن اليورانيوم هو ونظائره الوقود الأساسي والأكثر استعمالًا وشيوعًا، فهو موجود في بعض الصخور في مختلف أنحاء العالم، ولكن نقل هذه المادة يمثل خطرًا كبيرًا على الإنسان لأنها تعد مصدرًا للتلوث، وقد تصيب الإنسان والحيوان والنباتات والماء بالإشعاع.

يمتص الإنسان هذه الإشعاعات فتصيبه بمختلف أنواع السرطان، كما يمتصها الحيوان والنبات والماء، وتصل إلى الإنسان عبرهم لأنهم يشكلون مصدر غذائه. [5]

مميزات الطاقة النووية

مع مرور الزمن وتوالي السنين بدأ النفط بالانتهاء. يعتبر النفط عنصرًا أساسيًا لإنتاج الطاقة، فبدأ العالم بالتفكير بمورد جديد للطاقة مثل طاقة الرياح، والطاقة الشمسية، لكنهما محدودتان، فبعض الدول لا تزورها رياح قوية طوال العام، ولا كل أيامها مشمسة وصافية.

لذلك كانت الطاقة النووية خيارًا جيدًا ورخيصًا ولا نهائيًا، فهي تمثل 16% من الكهرباء حول العالم عوضًا عن أنها أكثر أمانًا على ظاهرة الاحتباس الحراري، فالطاقة النووية لا تنتج انبعاثات للكربون أو أي ملوثات غازية كالوقود الأحفوري، ويمكن توليد كمية هائلة منها بأقل التكاليف، كما يمكن استخدامها في تحلية ماء البحر واستكشاف الفضاء، نظرًا لاستخدامها كوقود.

فقد استخدمت تقنية الطاقة النووية لاستكشاف النظام الشمسي من قبل 27 بعثة، وتوفر هذه التقنية فرص عملٍ وتُزيد من النمو الاقتصادي. [4] [5]

الطب النووي

يستخدم الطب النووي المواد المشعة من خلال الحقن أو الاستنشاق، ثم يستخدم أدوات التتبع المشعّة لتقييم وظائف الجسم وتشخيص الأمراض وعلاجها.

ويلعب الطب النووي في الوقت الحالي دورًا محددًا في الممارسات السريرية، نظرًا لفائدته في التخصصات الطبية، فهو يوفر خياراتٍ تشخيصية وعلاجية ذات صلة، تؤدي إلى تقديم رعاية أفضل للمرضى وتحسين جودة حياتهم.

يُستخدم الطب النووي في فحص العظام، خاصًة في حالات الكسور والأورام، ومسح نضح عضلة القلب للتفريق بين الاحتشاء أو نقص التروية، ومسح الغدة الدرقية لتقييم المظهر ووظيفة الغدة، كما يُستخدم التصوير المقطعي البوزيتروني PET لاكتشاف السرطان ومراقبة تقدمه ومدى الاستجابة للعلاج، فأداة التصوير هذه تعتمد على الخصائص الفيزيائية للنظائر، والأشكال المشعة للذرات البسيطة كالهيدروجين، والأكسجين، والفلور.[2] [1]

توالت السنوات، وقصفت نجازاكي وهيروشيما عام 1945، ومات الكثير من الناس، فخاف الرأي العام من هذه الطاقة.

وقد كانوا على حق، لما لهذه الطاقة من أثرٍ قاتلٍ على الإنسان إذا تسربت وامتصها جسمه.

ولكن لا يمكننا نكران أن جزءًا من كهربائنا الحالية يعود الفضل فيه إلى الطاقة النووية، كما ساهمت في شفاء مرضانا. فكل شيٍء ضار إذا أسأنا استخدامه، وكل شيٍء مفيد إذا أخذنا كل الحيطة والحذر منه.

المصادر

who[1]
[2] NIH
[3] harvard
[4] scientificsaudi
[5] edx

Exit mobile version