Ad

هل تساءلت يومًا عن سبب تسخين بعض المواد أسرع من غيرها؟ أو لماذا يتطلب تسخين كوب من الماء طاقة أكثر من كوب الحليب؟ الإجابة على هذه الأسئلة تتعلق بالسعة الحرارية Heat capacity، والسعة الحرارية النوعية Specific heat capacity للمواد المختلفة.

السعة الحرارية هي مقدار قدرة المادة على الاحتفاظ بالحرارة. تخيل أن لديك مادتين مختلفتين، مثل المعدن والبلاستيك. إذا وضعت المادتين في نفس القدر من ضوء الشمس، فسوف يسخن المعدن بشكل أسرع من البلاستيك. هذا لأن المعدن له سعة حرارية أعلى من البلاستيك. يمكن للمعدن الاحتفاظ بمزيد من الطاقة الحرارية دون تغيير كبير في درجة حرارته.

ما هي السعة الحرارية؟

السعة الحرارية هي مقياس لمقدار الطاقة الحرارية التي يمكن للمادة أن تمتصها دون تغيير كبير في درجة حرارتها. بمعنى آخر، السعة الحرارية هي مقياس لمدى “مقاومة الحرارة” لمادة ما. وللمواد المختلفة سعات حرارية متباينة. على سبيل المثال، يتمتع الماء بسعة حرارية أعلى بكثير من الهواء. نتيجة لذلك، يتطلب تسخين الماء طاقة أكثر مما يتطلبه تسخين الهواء [1,2] . لكن إن كانت هذه السعة الحرارية فما المقصود بالسعة الحرارية النوعية إذن؟

ما هي السعة الحرارية النوعية؟

السعة الحرارية النوعية لمادة ما هي مقياس لمقدار الحرارة المطلوبة لرفع درجة حرارة جرام واحد من المادة بمقدار درجة واحدة. ولأن المواد المختلفة تمتلك سعات حرارية متباينة، إذ يحتوي الماء على سعة حرارية محددة تبلغ 4.184 جول / جم درجة مئوية، بينما يحتوي الحديد على مقدار محدد يبلغ 0.450 جول / جم درجة مئوية. هذا يعني أن ارتفاع درجة حرارة جرام واحد من الماء بمقدار 4.184 مرة أكثر مما يتطلبه الأمر لرفع درجة حرارة جرام واحد من الحديد بدرجة واحدة.

السعة الحرارية والسعة الحرارية النوعية مفاهيم مهمة في العلوم والهندسة. ويتم استخدامهم في مجموعة متنوعة من التطبيقات، مثل الطهي وتدفئة المباني وتصميم المحركات. إليك تجربة ممتعة يمكنك القيام بها مع طفلك لمعرفة المزيد عن السعة الحرارية وعن تطبيقاتها.

تجربة صنع بالون مقاوم للنار

هل أنت مستعد لتجربة بالون سهلة للغاية؟ تستخدم تجربة البالون خدعة رائعة مع الماء لجعلها مقاومة للنار. دعنا نبدأ [3].

الخطوات

  1. نفخ بالون بالهواء.
  2. اشعل شمعة وضعها على طبق.
  3. اجعل البالون قريبًا من اللهب قدر الإمكان حتى ينفجر.
  4. املأ بالونًا آخر بقليل من الماء من الصنبور ثم انفخه بالهواء ليصبح في حجم البالون الأول.
  5. اخفض البالون المملوء بالماء والهواء باتجاه اللهب وانظر ماذا سيحدث!
  6. أزل البالون من اللهب ولاحظ البقعة المحترقة من البالون، لكنها لم تنفجر! لماذا؟

الملاحظات

تأكد من أن طفلك قد لاحظ انفجر البالون الأول عند وضعه بالقرب من مصدر حرارة، وأنه يتساءل من عدم انفجار البالون الآخر الذي يحتوي الماء قبل أن تكشف عن السبب، فعملية التساؤل ضرورية للتعلم.

balloon_candle

اعتمادًا على كمية الماء الموجودة في البالون الثاني، يسخن الماء بدرجة كافية (عادةً في غضون 30 ثانية إلى دقيقة واحدة)، وسينفجر في النهاية كالبالون الأول، لكنه انتظر كثيرًا قبل الانفجار، أليس كذلك؟

balloon_candle_water

يمكنك إخراج البالون من اللهب قبل الانفجار والنظر إلى المكان الذي تعرض للنار. قد تشعر بالدهشة لأنه على الرغم من أن البالون الخاص بك يبدو محترقًا من اللهب في ذلك المكان الملامس للنار، إلا أنه لم ينفجر بالماء في كل مكان. في الواقع، إذا نظرت عن كثب إلى الجزء السفلي من البالون حيث لامس اللهب اللاتكس ، فستكون هناك بقعة سوداء. هذه البقعة السوداء ليست البالون الذي يحترق في الواقع ، لكنه رواسب الكربون التي تُركت على البالون بينما حرق اللهب الأكسجين وأطلق ثاني أكسيد الكربون. يمكنك بالفعل انتزاع منشفة مبللة أو قطعة قماش ومسح برفق السخام الكربوني الأسود من البالون، ليبدو وكأنه جديد.

لماذا لا ينفجر بالون الماء بنفس سرعة البالون الهوائي؟

السر وراء تجربة البالون والشمعة موجود حقًا في الماء. حيث يتمتع الماء بسعة حرارية أعلى بكثير من الهواء، مما يعني أنه يستهلك طاقة لتسخين المياه أكثر بكثير مما يتطلبه تسخين الهواء. فالماء قادر على امتصاص الكثير من الحرارة من اللهب وسحبها بعيدًا عن اللاتكس، مما يمنع مادة اللاتكس الخاص بالبالون من الذوبان، ولا يسمح للبالون بالانفجار لوقت أطول. في النهاية، سيصبح الماء ساخنًا بدرجة كافية بحيث لا يحافظ على مادة اللاتكس باردة بدرجة كافية وسينفجر البالون، لكن الأمر سيستغرق وقتًا أطول بكثير عن البالون الذي كان به هواء فقط.

ما العوامل المؤثرة على السعة الحرارية؟

السعة الحرارية خاصية مادية، تعتمد على عدة عوامل كالآتي:

  1. الكتلة: تتناسب السعة لمادة ما طرديا مع كتلتها. مما يعني أن الكتلة الأكبر ستتطلب مزيدًا من الحرارة لرفع درجة حرارتها مقارنةً بالحرارة التي تتطلبها كتلة أصغر لترتفع حرارتها بنفس المقدار.
  2. حالة المادة: يمكن أن تتغير السعة الحرارية للمادة اعتمادًا على حالتها. على سبيل المثال، للماء مقدار أعلى كسائل منه كغاز. وذلك لأن الجزيئات الموجودة في السائل تكون أقرب من بعضها البعض ولديها قدرة أكبر لامتصاص الحرارة من الجزيئات الموجودة في الغاز.
  3. القوى بين الجزيئات: يمكن أيضًا أن تتأثر السعة الحرارية لمادة ما بقوة الربط بين جزيئات المادة. على سبيل المثال، للماء سعة حرارية أعلى من الكحول لأن جزيئات الماء لها قوة ربط أقوى بين الجزيئات من الكحول.

ما هي التطبيقات اليومية للسعة الحرارية في الحياة الواقعية؟

نتيجة لأهمية هذه الخاصية في علوم المواد، تُستخدم لدراسة مدى ملائمة واختيار المواد المختلفة للعديد من التطبيقات في الحياة الواقعية اليومية مثل الطهي وتدفئة المباني. كذلك على المستوى الصناعي تستخدم الخاصية في تصميم المحركات وتشغيلها في السكك الحديدية [4].

تطبيقات في حياتنا اليومية

1. الطهي: تُستخدم هذه الخاصية في الطهي لتحديد المدة التي يستغرقها طهي الطعام. على سبيل المثال، يتمتع الماء بسعة حرارية عالية، لذلك يستغرق تسخينه وقتًا أطول من الزيت. نتيجة لذلك يتم طهي الطعام بشكل أسرع عند طهيه بالزيت بدلاً من الماء.

2. المواد المستخدمة في صنع أواني الطهي: أواني طهي الخضروات وما إلى ذلك مصنوعة من مواد منخفضة الحرارة ذات قاع مصقول. لذلك، تسخن بشكل أسرع مثل النحاس والألمنيوم والجرانيت وما إلى ذلك.

3. مقابض الأواني في المنزل مصنوعة من مواد توفر العزل الحراري. وتؤثر الحرارة النوعية أيضًا على قدرة العزل والموصلية.

4. استخدام مواد حرارية عالية الجودة كعوازل: الخشب على سبيل المثال لديه حرارة نوعية عالية. خلال فصل الصيف، تحافظ البيوت الخشبية على برودة الداخل. ويمكن للبناة اختيار مواد البناء المناسبة بناءً على الموقع والارتفاع. مما يتيح بناء منازل أكثر دفئًا أو برودة.

تطبيقات في الصناعة

  1. تصميم أنظمة الحماية من الحرائق: تُستخدم السعة الحرارية في تصميم أنظمة الحماية من الحرائق لتحديد مقدار الحرارة التي يمكن أن يمتصها نظام الحماية من الحرائق دون ارتفاع درجة الحرارة. لذلك تُستخدم المواد عالية السعة الحرارية، مثل الماء كي تمتص الطاقة الحرارية دون ارتفاع درجة الحرارة، مما يساعد على حماية الأشخاص والممتلكات من الحرائق.
  2. تصميم المحركات: تستخدم السعة الحرارية في تصميم المحركات لتحديد مقدار الحرارة التي يمكن أن يمتصها المحرك دون ارتفاع درجة حرارته. على سبيل المثال، يمكن للمواد ذات السعات الحرارية العالية، مثل المعادن، أن تمتص الطاقة الحرارية دون ارتفاع درجة الحرارة، مما يساعد على حماية المحركات من التلف.
  3. تصميم العزل الحراري: تستخدم السعة الحرارية في تصميم العزل الحراري لتحديد مقدار الحرارة التي يمكن نقلها عبر المادة. على سبيل المثال، يمكن للمواد ذات السعات الحرارية العالية، مثل الرغوة إبطاء نقل الحرارة، مما يساعد على إبقاء الأشياء دافئة أو باردة.
  4. تشغيل محركات السكك الحديدية أو الدوارات في مولدات التيار المتردد: يستخدم البخار لنقل الكثير من الطاقة الحرارية عند ضغوط عالية  للبخار حرارة نوعية عالية (أكثر من الماء)

المصادر

  1. Heat capacity | Britannica
  2. Heat capacity and calorimetry | Khan Academy
  3. Heating water in a experiment | Physics Demo
  4. Applications of Specific Heat Capacity | Heat | myhometuition Youtube Channel

سعدنا بزيارتك، جميع مقالات الموقع هي ملك موقع الأكاديمية بوست ولا يحق لأي شخص أو جهة استخدامها دون الإشارة إليها كمصدر. تعمل إدارة الموقع على إدارة عملية كتابة المحتوى العلمي دون تدخل مباشر في أسلوب الكاتب، مما يحمل الكاتب المسؤولية عن مدى دقة وسلامة ما يكتب.


فيزياء كيمياء

User Avatar

Menna Attia


عدد مقالات الكاتب : 19
الملف الشخصي للكاتب :

مقالات مقترحة

التعليقات :

اترك تعليق