Ad

تعمل عيوننا كمجسات للضوء شديدة الحساسية، حيث تعينان شدة الأشعة الساقطة عليهما ولونها وانتشارها في الفضاء. وتمتلك شبكية العين البشرية من (البكسلات) أكثر مما تمتلكه آلة تصوير رقمية. ففي الشبكية نحو ستة ملايين من الخلايا المخروطية التي تتحسس باللون وأكثر من 100 مليون من الخلايا الأسطوانية المسؤولة عن الرؤيا في الظلام. والعيون حساسة جداً، حيث أن خلية واحدة أسطوانية معتادة على الظلام يمكن أن تطلق إشارة إلي الدماغ عند امتصاصها جسيما واحداً من جسيمات الضوء (فوتوناً). والفوتون هو أصغر وحدة كمومية من موجة كهرومغناطيسية. وتلزم ست فقط من إشارات الفوتون الواحد لكي يري الدماغ ومضة. لكن العيون وآلات التصوير التجارية بعيدة عن أن تكون مثالية للعديد من المهمات. لأنها لا تستطيع أن تكشف سوى تلك الفوتونات التي تقع تردداتها في المدي المرئي الضيق. وأكثر من ذلك فإن قدراتها اللونية لا تتضمن قياس التردد المضبوط  لكل فوتون. ومن هنا أتى احتياجنا الكبير لمجسات فوتونية علمية وصناعية قادرة على كشف المجالات الكهرومغناطيسية التي تقع خارج مدي الضوء المرئي. نريد مجسات فوتونية قادرة على التقاط عوالم الأشعة تحت الحمراء والموجات الميكروية، حيث الترددات منخفضة (الأطوال الموجية طويلة، والطاقة منخفضة).

يفتقر العلماء بصورة خاصة، بالنسبة إلي الأطوال الموجية المرئية والأطول منها، إلي أجهزة قادرة علي رؤية فوتون منفرد وعلي تمييز تردده، ومن ثم طاقته بأي دقة كانت. حيث إن تعيين تردد الفوتونات يفتح الباب أمام ثروة من المعلومات حول المادة المصدرة لهذه الفوتونات. إن كشف الفوتونات بابتكار مجسات أساسها الموصلية الفائقة، بإمكانها القيام بمثل تلك القياسات الدقيقة وبأمور أخرى غير عادية. إذ أن هذه الأدوات الجديدة تحسن حساسية القياسات على مدى الطيف الكهرومغناطيسي من الموجات الراديوية إلي الضوء المرئي إلي أشعة جاما تحسينا مذهلا.

هشاشة الموصلات الفائقة ودورها في صناعة مجسات فوتونية

من الغريب أن تكون خاصية التوصيلية الفائقة التي نتج عن استخدامها في تطبيقات مثل نقل القدرة الكهربائية، هي بالضبط الميزة التي احتاجها العلماء لصناعة مجسات للفوتونات. فالموصلية الفائقة التي هي سريان التيار الكهربي من دون مقاومة، وتنشأ حين ترتبط الإلكترونات فى مادة مناسبة بعضها ببعض لتشكل ما يسمي أزواج كوبر Cooper pairs.

تسري أزواج كوبر عندئذ كمائع فائق. وهناك تأثير ميكانيكي كمومي مفاده أن الموصلية الفائقة لا تحدث فى المادة إلا حين تُبَرد هذه المادة إلي درجة حرارة منخفضة جداً، وتدعي حرارة التحول الحرجة لتلك المادة. وتبريد المادة ينقص اهتزاز ذراتها. فإذا ارتفعت درجة الحرارة فوق حرارة العتبة (Threshold)، أبعدت الطاقة الحرارية للتصادمات الإهتزازية الإلكترونين الشريكين في أزواج كوبر أحدهما عن الآخر. وأزالت بذلك الموصلية الفائقة. وبسبب هذه الحساسية للحرارة لا بد من تبريد العديد من الموصلات الفائقة إلي درجات قليلة فقط فوق الصفر المطلق ( درجة 0 كلفن تساوي 273.15-). وتحتاج بعض الأنواع إلي درجات حرارة منخفضة لا تتجاوز أجزاء قليلة من المئة من الكلفن.

هشاشة مفيدة

ولكن هشاشة الموصلية الفائقة بحد ذاتها هي الصفة التي تجعلها مناسبة بصورة مثالية للاستخدام فى المجسات الحساسة. وتعتمد مجسات الفوتونات فائقة الموصلية علي مقدرة طاقة فوتون منفرد علي تمزيق الآلاف من أزواج كوبر. عندئذ يمكن قياس التغير في حالة الموصلية الفائقة بعدة طرق بهدف الكشف عن الطاقة التي أعطاها الفوتون أي لصناعة المجسات الفوتونية. ولما كانت طاقة الفوتون متناسبة مع تردده، فإن هذا القياس يدل علي تردد الفوتون. وهذا هو المفتاح للحصول على معلومات عن الجسم الذي أتى الفوتون منه. [1]

تعمل المجسات شبه الموصلة العاملة عند درجة الحرارة العادية، مثل الأجهزة ذات الشحنات المقترنة Charged-coupled devices الموجودة في آلة تصوير رقمية، بواسطة تشويش حالة كمومية في المادة. ففي حالة الجهاز CCD، يصدم فوتون الضوء المرئي إلكترونا فيخرجه من نطاق طاقة في بلورة شبه موصلة. ولكن الإلكترونات مرتبطة ارتباطا قويا فى هذه النطاقات، لدرجة أن كل فوتون لا يحرر عادة سوي إلكترونا واحد. وهذا التحرير قليل جداً لدرجة أنه لا يكفي لتحديد تردد الفوتون. ونتيجة لذلك لا يستطيع الجهاز CCD تعيين لون الفوتون مباشرة. أما الآلات الرقمية فتشكل صوراً ملونة باستخدامها مجموعة مرشحات، أحدهما أحمر والآخر أخضر والثالث أزرق، ولا تمرر سوى الفوتونات التي تقع تردداتها في هذه المجالات. وعلي النقيض من ذلك، فإن بإمكان فوتون مرئي واحد فصل الآلاف من أزواج كوبر فى الموصل الفائق. ويتيح تكوين آلاف الإثارات قياس الطاقة قياسا دقيقا.

أنواع المجسات الفوتونية فائقة التوصيل

تصنف المجسات التي تعمل علي تحسس تمزق الموصلية الفائقة فى صنفين رئيسيين. النوع الحراري الذي يبرد حتي درجة حرارته الانتقالية بالضبط، وعندها لا يكون إلا جزئيا في حالة الموصلية الفائقة وتكون الإثارات الحرارية علي وشك أن تخرب الموصلية الفائقة كليا. وأي طاقة تُودَع فى الموصل الفائق ترفع درجة حرارته وتسبب ارتفاع مقاومته الكهربائية ارتفاعا ملموسا. أما النوع الأخر، المجسات الفاصلة للأزواج Pair-breaking فهو علي العكس من ذلك، إذ يُبَرد إلى درجة حرارة أخفض من درجة حرارة الانتقال ويكون فى حالة الموصلية الفائقة كليا. ويقيس هذا المجس عدد أزواج كوبر التي تحطمت عند إيداع الطاقة فيه.[2]

المجسات ذات الحافة الانتقالية (TES)

يعتمد النوع الحراري من المجسات الفوتونية علي حقيقة أن المقاومة الكهربائية للموصل الفائق ترتفع بشكل حاد من الصفر إلي قيمتها الاعتيادية فى المدى الضيق جداً من درجة الحرارة الذي تتحول فيه المادة من حالتها فائقة الموصلية إلي حالتها العادية. ويتيح التغير الفجائي فى المقاومة للموصل الفائق أن يعمل عمل ميزان حرارة بالغ الحساسية. ويدعي المجس الذي يستخدم الانتقال الطوري الفائق الموصلية بهذه الطريقة مجساً ذا حافة انتقالية Transition-edge sensor. وحين يمتص المجس TES فوتوناً، تتحول طاقة الفوتون إلي طاقة حرارية ترفع درجة الحرارة ومن ثم تزيد مقاومة المادة بصورة متناسبة مع الطاقة المودعة. ويمكن تبعا للمادة التي تمتص الفوتونات، أن يٌستخدم المجس TES مثل مقياس طيف لقياس طاقة الأشعة السينية وأشعة جاما أو مثل عداد فوتونات عند الأطوال الموجية تحت الحمراء أو حتى المرئية.[3]

تم تطوير أوائل المجسات TES فى الأربعينيات لكنها لم تكن عملية. وكانت المشكلة في أن مدى الانتقال إلي الموصلية الفائقة غالبا ما يكون أقل من جزء من ألف من الدرجة. ولذلك كان من الصعب إبقاء درجة حرارة الجهاز ضمن هذا المدى. وفى عام 1993، تم اكتشاف حيلة بسيطة أمكنت من حل هذه المشكلة. وهي تطبيق جهد كهربي ثابت، وهي تقنية تدعى انحياز الفلطية Voltage biasing. يؤدي الجهد المطبق إلي مرور تيار كهربي عبر المجس TES، وهو ما يرفع درجة حرارته للتسخين. وعند ارتفاع درجة حرارة الانتقال ترتفع المقاومة، و ينقص التيار الكهربي ويتوقف التسخين. وهكذا يعمل التسخين الذاتي ارتجاع Feedback سالب، فيبقي درجة حرارة الغشاء ضمن مجاله الانتقالي. كما أن الارتجاع السلبي يسرع استجابة المجسات. وقد أدي إدخال انحياز الفلطية إلي نمو هائل فى تطوير المجسات الفوتونية TES فى العالم كله.

مجسات الوصلة النفقية فائقة الموصلية Superconducting tunnel junctions

لا يمكن للمجسات الفاصلة لأزواج كوبر أن تعتمد علي التغير فى المقاومة الكهربائية لكي تعطي إشارة امتصاص فوتون. فبخلاف المجس الحراري، يحطم الفوتون الوارد أزواج كوبر ويُكَوِن أشباه جسيمات يمكن اعتبارها بمثابة إلكترونات حرة فى مادة أخري فائقة الموصلية. ويكون عدد أشباه الجسيمات الناتجة متناسبةً مع طاقة الفوتون. ولكن لما كان المجس مبرداً إلي ما دون درجة حرارته الانتقالية بكثير، فلا يزال ثمة بحر من أزواج كوبر السليمة. ولذا تبقي المقاومة الكهربية معدومة. وينبغي أن يحتفظ المجس الفاصل للأزواج بقدرته علي التمييز بين أزواج كوبر وأشباه الجسيمات.

إن أحد الأجهزة القادرة علي القيام بتلك المهمة هو الوصلة النفقية الفائقة الموصلية Superconducting tunnel junctions، المؤلفة من غشائين فائقي الموصلية تفصلهما طبقة رقيقة من مادة عازلة. فإذا كان العازل رقيقا لدرجة كافية (نحو 2 نانومتر)، أمكن للإلكترونات أن تعبر من أحد جانبي الحاجز إلي الجانب الآخر بواسطة خاصية تعرف بالعبور النفقي الكمومي quantum-mechanical tunneling. ويؤدي تطبيق مجال مغناطيسي صغير إلي منع أزواج كوبر من العبور النفقي عبر الوصلة فلا يستطيع العبور إلا أشباه الجسيمات. بعد ذلك يمكن تطبيق جهد كهربي علي الجهاز، فلا يمر تيار إلا حين يمتص أحد الغشائين فائقي التوصيلية فوتوناً يولِد أشباه جسيمات. وتكون نبضة التيار الناتجة متناسبة مع عدد أشباه الجسيمات المستحدثة وإذاً مع طاقة الفوتون وتردده.[4][5]

تطبيقات المجسات فائقة الموصلية

إن المجسات فائقة الموصلية المتاحة اليوم أكثر حساسية 100 إلي 1000 مرة من المجسات العادية التي تعمل عند درجة حرارة الغرفة. وهذه الأجهزة تحسن القياسات فى مدي واسع من المجالات.

منع انتشار الأسلحة النووية والدفاع الوطني

إن إحدي الأولويات الدولية هي مراقبة انتشار المواد النووية التي يمكن أن تستخدم فى هجوم يقوم بيه إرهابيون. وتحتوي المواد النووية على نظائر غير مستقرة تصدر أشعة السينية وأشعة جاما. وتوفر الطاقات المميزة لهذه الفوتونات بصمة تكشف عن ماهية تلك النظائر الموجودة. ولكن لسوء الحظ تصدر بعض النظائر الموجودة فى تطبيقات شرعية وعادية هي الأخرى أشعة جاما ذات طاقات شبيهة بتلك التي تصدرها مواد تستخدم في الأسلحة النووية. وهذا يؤدي إلى تحديد ملتبس وتحذيرات مزيفة. فعلى سبيل المثال، تتمثل الطاقة المميزة لليورانيوم العالي التخصيب فى أشعة جاما ذات طاقة 185.7 كيلو إلكترون فولت الصادرة من يورانيوم 235. لكن أشعة جاما هذه لها نفس الطاقة تقريبا التي تصدر عن الراديوم 226 الموجودة فى الطين فى الحاويات المخصصة للقطط وفى مواد أخري. وهذا يجعل التمييز بين الاثنتين صعبا جدا.

وقد تم تطوير مجسات من قبل مختبر لوس ألاموس الوطني لأشعة جاما مبنية علي أساس تقانة TES وتتمتع بقدرة تمييز طاقية تفوق أكثر من عشر مرات تلك التي للمجسات العادية. إذ تستطيع تلك المجسات فصل عدد أكبر من الخطوط فى أطياف أشعة جاما المعقدة للمواد النووية. وتستطيع التفريق بين اليورانيوم والراديوم والقضاء علي التحذيرات الزائفة.

الكوسمولوجيا (علم الكون)

في السنوات الأخيرة، أتت بعض أهم الاكتشافات حول فهمنا للكون من قياس اشعاع الخلفية الكونية من الموجات الميكروية Cosmic microwave background (CMB). فالفوتونات فى الخلفية الكونية هي صورة لحظية للكون بعد نحو 400000 سنة من الانفجار الأعظم. وهذا بسبب مرور معظم الفوتونات عبر الكون أثناء ال 13 بليون سنة الماضية من دون أي تغير، وأحدثت الموجات الصوتية في بلازما الكون المبكر نماذج إشعاع خلفية CMB يراها الفلكيون اليوم. وقد أظهرت قياسات تلك النماذج، أن 5% من الكون الحالي فقط يتألف من المادة والطاقة العاديتين المألوفتين بالنسبة لنا. وأن نحو 22% هي مادة خفية Dark matter و73% هي حقل غامض يعرف بالطاقة الخفية Dark energy. وقد ساعدت المجسات فائقة الموصلية العلماء علي الوصول إلي طاقات لا يمكن الوصول إليها أبدا بالتجارب الأرضية.

صارت المجسات الفائقة بالإضافة إلي ما تم ذكره من تطبيقات، تستخدم أيضا فى السنكروترونات للتحليل الكيميائي للمعادن في البروتينات وفي عينات أخري. كما ساعدت أيضًا في الكشف الفعال عن بوليمرات بيولوجية كبيرة من شظايا ال DNA، واكتشاف الأدوية وتحليل المركبات الطبيعية. بالإضافة إلي عد الفوتونات عند أطوال موجية تحت الحمراء، المستخدم في الاتصالات.

المصادر

1- Low Temperature particle detectors|
2-Superconducting nanowire single-photon detector
3-Transition-edge sensor
4-Quantum Tunneling
5-Superconducting tunnel junction

سعدنا بزيارتك، جميع مقالات الموقع هي ملك موقع الأكاديمية بوست ولا يحق لأي شخص أو جهة استخدامها دون الإشارة إليها كمصدر. تعمل إدارة الموقع على إدارة عملية كتابة المحتوى العلمي دون تدخل مباشر في أسلوب الكاتب، مما يحمل الكاتب المسؤولية عن مدى دقة وسلامة ما يكتب.


هندسة تقنية فيزياء

User Avatar

ahmed kasem


عدد مقالات الكاتب : 11
الملف الشخصي للكاتب :

مقالات مقترحة

التعليقات :

اترك تعليق