Ad

تُستخدم تقنية حيود الأشعة السينية ـــX-ray diffraction (XRD) لفهم بنية المواد على المستوى الذري والجزيئي. الامر مثل امتلاك قوة خارقة تتيح لنا النظر داخل المواد ورؤية بنيتها المخفية. يمكننا فهم خصائص المواد، وتطوير مواد جديدة ذات خصائص مخصصة، كما يمكننا حل بعض أكبر الألغاز في العلوم, عبر تطبيقات في مجموعة واسعة من المجالات، بدءًا من علوم المواد والكيمياء وحتى الجيولوجيا والبيولوجيا. وقد تم استخدام قتنية حيود الآشعة لدراسة كل شيء من المعادن والفلزات إلى البروتينات والفيروسات. فكما تحدثنا في المقالات السابقة عن إمكانية استخدام المجهر الإلكتروني الماسح (SEM) لدراسة سطح العينة، وإنشاء صورة ثلاثية الأبعاد. يشيع استخدام (SEM) لدراسة شكل سطح المواد، وكذلك استخدام المجهر الإلكتروني النافذ (TEM) لتكوين صورة للبنية الداخلية للعينة. ويشيع استخدامه لدراسة بنية المواد، والعيوب في المواد. سنتحدث في هذا المقال عن استخدام تقنية XRD لدراسة بنية المواد في الظروف القاسية، مثل الضغوط العالية ودرجات الحرارة. أحد أكثر تطبيقات XRD إثارةً هو دراسة المواد النانوية.

ما هي تقنية حيود الأشعة السينية وكيف تعمل؟

الأشعة السينية هي نوع من الإشعاع الكهرومغناطيسي بطول موجي يشبه المسافة بين الذرات في البلورات. عندما يتم تسليط الأشعة السينية على البلورة، فإنها تتناثر بواسطة الذرات الموجودة في البلورة. من ثم تتداخل الأشعة السينية المتناثرة مع بعضها البعض، ويسمى النمط الناتج من الأشعة السينية المتناثرة نمط الحيود. يحتوي نمط الحيود على معلومات حول المسافات بين الذرات الموجودة في البلورة والزوايا التي انحرفت عندها الأشعة السينية.

للحصول على نمط الحيود، توضع بلورة في مسار شعاع الأشعة السينية، ويتم وضع الكاشف لالتقاط الأشعة السينية المنحرفة. يتم تدوير البلورة، ويسجل الكاشف شدة الأشعة السينية المنحرفة بزوايا مختلفة. من خلال تحليل نمط الحيود الناتج، يمكن للعلماء إعادة بناء بنية البلورة. يُعتبر تحليل XRD بصمة للمواد. وكما أن كل شخص لديه بصمة فريدة، فإن كل مادة لها نمط XRD فريد. ومن خلال مقارنة نمط XRD لمادة ما بقاعدة بيانات للأنماط المعروفة، يمكننا التعرف على المادة وتحديد خصائصها. أهم ما يميز تقنية XRD أنها تقنية غير مدمرة، مما يعني أنها لا تلحق الضرر بالعينة التي يتم تحليلها. هذا يجعلها مفيدة بشكل خاص لدراسة المواد الحساسة أو القيمة. كما يمكن استخدامها لتحليل مجموعة واسعة من المواد [1] .

ما هي استخدامات تقنية حيود الأشعة السينية في علم المواد؟

أحدث حيود الأشعة السينية ثورة في فهمنا للمواد ولا تزال أداة حيوية في البحث العلمي والتطوير، حيث أنها تقنية تحليلية قوية يمكن استخدامها لتحديد التركيب البلوري لمجموعة واسعة من المواد. كما تستخدم على نطاق واسع في البحث العلمي، وخاصة في مجالات علوم المواد والكيمياء والجيولوجيا والفيزياء. فيما يلي بعض الطرق التي يمكن من خلالها استخدام تقنية XRD في علم المواد [2] :

  • توصيف المواد Material characterization: يمكن استخدام XRD لتحديد التركيب البلوري وتركيب المواد، بما في ذلك المعادن والفلزات والسيراميك والبوليمرات. حيث تستخدم هذه المعلومات لفهم الخصائص الفيزيائية والكيميائية للمادة. وكذلك تستخدم لتطوير مواد جديدة ذات خصائص محددة والتي يمكن أن تكون مفيدة في مجالات البصريات، وعلوم المواد.
  • مراقبة الجودة: يمكن استخدام XRD لضمان جودة المواد واتساقها، كما هو الحال في تصنيع الأدوية وأشباه الموصلات والسيراميك.
  • تحليل المرحلة Phase analysis: يمكن استخدام XRD لتحديد المراحل الموجودة في المادة، بما في ذلك كمياتها النسبية وبنيتها البلورية. يمكن استخدام هذه المعلومات لدراسة التحولات الطورية، مثل الذوبان، وتفاعلات الحالة الصلبة، والتحولات متعددة الأشكال.
  • التحليل الهيكلي Structural analysis: يمكن استخدام XRD لتحديد التركيب البلوري للمادة، بما في ذلك أبعاد خلية الوحدة، والمجموعة الوظيفية، والمواقع الذرية. مما يساعد على فهم الخصائص الفيزيائية والكيميائية للمادة، وكذلك لتطوير مواد جديدة ذات خصائص محددة.
  • الدراسات الحركية Kinetics studies: يمكن استخدام XRD لدراسة حركية التحولات الطورية، مثل نمو البلورات أو تكوين أطوار جديدة في المواد، مثل الذوبان، وتفاعلات الحالة الصلبة، والتحولات متعددة الأشكال.

تسلط هذه التطبيقات الضوء على تنوع وأهمية XRD في علم المواد، مما يمكّن الباحثين من تطوير مواد جديدة ذات خصائص مخصصة وفهم سلوك المواد الموجودة في التطبيقات المختلفة.

ما هي تطبيقات XRD في المجالات المختلفة؟

حيود الأشعة السينية عبارة عن تقنية متعددة الاستخدامات تجد تطبيقات في مجالات مختلفة تتجاوز علم المواد. فيما يلي بعض الأمثلة على تطبيقات XRD في مجالات أخرى [3] :

  • الجيولوجيا: يستخدم XRD لدراسة التركيب البلوري وتكوين المعادن. حيث يساعد في تحديد وتصنيف الصخور والمعادن. ويمكنه أيضًا تقديم نظرة ثاقبة للعمليات الجيولوجية، مثل تكوين المعادن والصخور.
  • علم الأحياء: يُستخدم XRD لتحديد التركيب البلوري للبروتينات والجزيئات البيولوجية الأخرى، مما يساعد في فهم وظيفتها وتفاعلاتها. ويمكن استخدامه أيضًا لدراسة بنية DNA و RNA.
  • الكيمياء: يستخدم XRD لتحديد التركيب البلوري للجزيئات الصغيرة، لفهم خصائصها وسلوكها. ويمكن استخدامه أيضًا لدراسة بنية المحفزات والمواد الأخرى المستخدمة في التفاعلات الكيميائية.
  • علم الآثار: يستخدم XRD لدراسة التركيب البلوري وتكوين القطع الأثرية لتحديد هويتها وتاريخها.
  • الطب الشرعي: يستخدم XRD لدراسة التركيب البلوري وتكوين المواد الموجودة في مسرح الجريمة، مما يساعد في تحديد الأدلة وتحليلها.
  • المستحضرات الصيدلانية: يستخدم XRD لدراسة التركيب البلوري للأدوية والمستحضرات الصيدلانية الأخرى، مما يساعد في فهم خصائصها وسلوكها. ويمكن استخدامه أيضًا لدراسة هيكل أنظمة توصيل الدواء.
  • علم النانو: يستخدم XRD لدراسة التركيب البلوري للمواد النانوية، وهي مواد ذات أبعاد أقل من 100 نانومتر. تتمتع المواد النانوية بخصائص فريدة تجعلها مفيدة لمجموعة متنوعة من التطبيقات، مثل الحفز الكيميائي والإلكترونيات والطب. يعد حيود الأشعة السينية أداة قوية لدراسة التركيب البلوري للمواد النانوية، وهي مواد ذات أبعاد أقل من 100 نانومتر. تتمتع المواد النانوية بخصائص فريدة تجعلها مفيدة لمجموعة متنوعة من التطبيقات، مثل الحفز الكيميائي والإلكترونيات والطب. فيما يلي بعض الطرق التي يتم من خلالها استخدام XRD لدراسة المواد النانوية.
ترتيب ذرات الكريون في الجرافيت والماس

بشكل عام، تعد تقنية XRD قوية تجد تطبيقات في مجالات مختلفة، مما يساعد في فهم بنية وخصائص المواد والجزيئات البيولوجية والمواد الأخرى.

ما هي أساسيات التركيب البلوري؟

التركيب البلوري هو ترتيب متكرر للذرات أو الأيونات أو الجزيئات في المادة. يلعب التركيب البلوري للمادة دورًا حاسمًا في تحديد خواصها الفيزيائية والكيميائية، مثل سلوكها الميكانيكي والكهربائي والحراري والبصري.

يتم وصف التركيب البلوري للمادة من خلال وحدة الخلية ـــ Unit Cell الخاصة بها، وهي أصغر وحدة متكررة في الشبكة البلورية. تُعرف خلية الوحدة من خلال معاملاتها الشبكية ـــ lattice parameters، والتي تشمل طول حوافها (a, b, c) والزوايا بينها (α, β, γ). تتكون الشبكة البلورية عن طريق تكرار خلية الوحدة في ثلاثة أبعاد، مما يؤدي إلى ترتيب دوري للذرات أو الجزيئات كما موضح بالشكل التالي.

يعتمد نوع التركيب البلوري على تماثل وحدة الخلية وترتيب الذرات أو الجزيئات داخلها. هناك عدة أنواع من الهياكل البلورية، بما في ذلك التركيب البلوري:

  • المكعبي ـــ cubic
  • الرباعي الزوايا ـــ tetragonal
  • الثلاثي الزوايا ـــ Trigonal
  • السداسي الشكل ـــ hexagonal
  • معيني تقويمي ـــ orthorhombic
  • الأحادي الميل ـــ monoclinic
  • الثلاثي الميل ـــ triclinic

ومن البديهي أن نتسائل كيف يساعد الترتيب المختلف للذرات في خلية الوحدة والشبكة في تحديد التركيب البلوري للمركب؟ إن اختلاف ترتيب الذرات في الخلية الواحدة يؤدي إلى حيود الأشعة السينية بأنماط مختلفة. حيث يحتوي كل هيكل على نمط حيود الأشعة السينية الفريد (المشابه لبصمات الأصابع البشرية) الذي يعطي معلومات حول الترتيب المكاني المحدد للذرات في وحدة الخلية والشبكة. وهذا بدوره يعطي معلومات حول التركيب البلوري [4] .

كيفية تفسير أنماط حيود الأشعة السينية ؟

توفر أنماط حيود الأشعة السينية معلومات قيمة حول البنية البلورية للمادة، بما في ذلك حجم وشكل البلورات الموجودة في المادة. فيما يلي الخطوات الأساسية لتفسير نمط الحيود [2] :

  • تحديد القمم: يتكون نمط XRD من سلسلة من القمم، والتي تتوافق مع حيود الأشعة السينية بواسطة الشبكة البلورية. يتوافق موضع كل قمة مع زاوية الحيود (2θ) والتباعد بين المستويات البلورية ـــ d-spacing.
  • تحديد البنية البلورية: يمكن استخدام موضع وكثافة القمم لتحديد البنية البلورية للمادة. ويتم ذلك عن طريق مقارنة القمم المرصودة مع القمم المتوقعة للهياكل البلورية المختلفة، باستخدام قواعد بيانات مثل المركز الدولي لبيانات الحيود ـــ International Centre for Diffraction Data (ICDD)
  • تحليل شكل وعرض الذروة: يمكن أن يوفر شكل وعرض القمم معلومات حول حجم وشكل البلورات في المادة. حيث تشير القمم العريضة إلى أحجام بلورية صغيرة أو عيوب بلورية، بينما تشير القمم الضيقة إلى أحجام بلورية أكبر.
  • حساب حجم البلورات: يمكن حساب حجم البلورات في المادة باستخدام معادلة شيرير، التي تربط عرض الذروة بحجم البلورات. ويمكن استخدام هذه المعلومات لفهم الخواص الفيزيائية والكيميائية للمادة.
  • تحليل شدة القمم: يمكن أن توفر شدة القمم معلومات حول اتجاه البلورة والملمس في المادة. على سبيل المثال، تشير القمم القوية إلى اتجاه بلوري مفضل، بينما تشير القمم الضعيفة إلى اتجاه عشوائي.
نمط حيود الاشعة السينية

تعد XRD أداة رئيسية في تطوير مواد جديدة ذات خصائص محددة. من خلال فهم البنية البلورية للمادة، يمكننا تصميم مواد جديدة ذات خصائص محددة، مثل زيادة القوة، أو تحسين التوصيل، أو النشاط التحفيزي المعزز. يُستخدم حيود XRD أيضًا في مراقبة الجودة، مما يضمن اتساق المواد وجودتها العالية.

لا شك أن XRD تقنية رائعة وقوية تسمح لنا برؤية العالم غير المرئي للذرات والجزيئات. ولها تطبيقات في مجموعة واسعة من المجالات، وهي أداة رئيسية في تطوير مواد جديدة ذات خصائص مخصصة. باستخدام XRD، يمكننا كشف أسرار المواد وحل بعض أكبر الألغاز في العلوم. لكن المستقبل ما زال مفتوحًا أمامها لكشف المزيد من الأسرار العلمية.

المصادر

  1. Crystal structure basics | LibreTexts Chemistry
  2. X-ray Powder Diffraction (XRD) | MSU
  3. X-Ray Diffraction Applications | ThermoFisher
  4. Bravais Lattice | tutorix
  5. Crystallography Basics | Lowa State University

سعدنا بزيارتك، جميع مقالات الموقع هي ملك موقع الأكاديمية بوست ولا يحق لأي شخص أو جهة استخدامها دون الإشارة إليها كمصدر. تعمل إدارة الموقع على إدارة عملية كتابة المحتوى العلمي دون تدخل مباشر في أسلوب الكاتب، مما يحمل الكاتب المسؤولية عن مدى دقة وسلامة ما يكتب.


فيزياء تقنيه النانو

User Avatar

Menna Attia


عدد مقالات الكاتب : 19
الملف الشخصي للكاتب :

مقالات مقترحة

التعليقات :

اترك تعليق