المغناطيسيات الكلاسيكية وميكانيكا الكم

المغناطيسيات الكلاسيكية وميكانيكا الكم

ربما تبادر سؤال لذهنك وهو ما العلاقة بين المغناطيسيات وميكانيكا الكم؟ دعني أخبرك عزيزي القارئ بأن ميكانيكا الكم للمغنطيسيات هي واحدة من أهم الأنظمة في عالم الكم. لذا علينا قبل الانتقال إلى فهمها بأن نفهم أولًا كيف تتصرف المغنطيسيات الكلاسيكية. ففي مقالنا ( المغناطيسيات الكلاسيكية وميكانيكا الكم ) سنفهم ذلك. فسنتعرف عن ماهية المجال المغناطيسي والقوة المغناطيسية وكيف ينشأ المجال وتاريخ استكشافه…

سنصف الآن تفصيليًا ما يحدث عند وضع مغناطيس متحرك في مجال مغناطيسي غير منتظم وهذه أكثر الحركات تعقيدًا في الميكانيكا الكلاسيكية؛ لذا سنحلل كل جزء ببطء حتى نتمكن لاحقًا من فهم تجربة «stern-Gerlach» التي تجرى باستخدام الإبر المغناطيسية أو الحلقات ومن ثم نفهم سلوك النسخة الكمومية للتجربة، فهيا بنا.

ربما سمعنا عن مصطلح يسمى «القوة-Force» والمصطلحات دفع أو ضغط تعبر كذلك عن القوة, فإذا ضغطنا في نفس الاتجاه على جسم بالتساوي وفي مكانين مختلفين، فإنه سيتحرك موازيًا لوضعه الأول.

إذا طبقنا قوتين متساويتين في اتجاهين متعاكسين (بينهما مسافة) فإنهما سيتسببان في دوران ذلك الجسم وهذا ما نطلق عليه عزم الدوران.

فعزم الدوران هو القوة التي يمكن أن تتسبب في دوران جسم حول محوره.

لذا دعونا نلخص بعض الحقائق التي يجب أن نعرفها عن المغناطيس:

  • يحتوى المغناطيس على قطبين شمالي وجنوبي.
  • الأقطاب المختلفة تتجاذب.
  • تقل القوة كلما ابتعدنا عن القطب المغناطيسي.

الأن لندخل في المجال المغناطيسي الذي يعد محورًا لحديثنا وهام فهمه لما هو قادم.

ما هو المجال المغناطيسيّ؟

قبل التعرف على المجال المغناطيسيّ وجب أن نعرف ما هي القوة المغناطيسية؟

القوة المغناطيسيّة هي نتيجة القوة الكهرومغناطيسية التي تنتج عن حركة الشحنات (الموجبة أو السالبة) وهي من القوى الأساسية الأربعة للطبيعة (القوة الكهرومغناطيسية وقوة الجاذبية والقوة النووية القوية والقوة النووية الضعيفة).

فالمجال المغناطيسيّ صورة لوصف كيفية توزيع القوة المغناطيسيّة حول أو داخل شيء مغناطيسيّ. أو المنطقة المحيطة بمادة مغناطيسية أو شحنة كهربائيّة متحركة تعمل فيها قوة مغناطيسيّة.

فالمغناطيس له قطبان والأقطاب المتعاكسة تتجاذب والمتشابهة تتنافر ويصف المجال المغناطيسيّ المنطقة المحيطة بالمغناطيس عند مرور تيار كهربي. دعونا نعرف كذلك ما هي القوى الأساسية الأربعة في الطبيعة؟

الجاذبية

الجاذبية هي التجاذب بين جسمين لهما كتلة أو طاقة ونرى ذلك عند رمي صخرة من قمة برج وكان أول من اقترح فكرة الجاذبية هو إسحاق نيوتن وبعد قرون جاء ألبرت أينشتاين من خلال نظريته النسبية العامة. على الرغم من أنها تربط الكواكب والنجوم والأنظمة الشمسية إلا أنه قد تتبين أنها أضعف القوى الأساسية على المقياسين الجزيئي والذري.

القوة النووية الضعيفة

تعبر عن الجسيمات دون الذرية وهي أقوى من الجاذبية، فتصف البنية الأساسية للمادة، وأحد هذه الجسيمات هي الكوارك، إذ لم يرى العلماء ما هو أصغر منها والنوع الأخر من الجسيمات الأولية هو البوزون وهو الحامل للقوة ويتكون من حزم من الطاقة ويعتقد العلماء بوجود نوع أخر يسمى الجرافيتون وهذا لم يُعثر عليه بعد وهو مسؤول عن قوة الجاذبية.

القوة الكهرومغناطيسية

هي قوة تؤثر على الجسيمات المشحونة مثل الإلكترونات السالبة والبروتونات الموجبة. إذ أن الشحنات المتعاكسة تتجاذب والمتشابهة تتنافر وكلما زادت الشحنة، زادت القوة. تتكون من جزأين وهما القوة الكهربائية والقوة المغناطيسيّة، فتعمل القوة الكهربائية بين الجسيمات المشحونة سواء ثابتة أو متحركة وبمجرد أن تبدأ الجسيمات في الحركة، يأتي دور القوة المغناطيسيّة، إذ تخلق الجسيمات مجالًا مغناطيسيًا. تعد هي المسؤولة عن بعض الظواهر مثل الاحتكاك والمرونة والقوة التي تربط المواد الصلبة في شكل معين.

Related Post

القوة النووية القوية

هي أقوى قوة في الأربعة قوى الأساسية وهي المسؤولة عن ربط الجسيمات الأساسية للمادة لتشكيل جسيمات أكبر. فكما ذكرنا أن الكوارك أصغر الجسيمات ولا يمكن تقسيمها وهي اللبنات الأساسية لفئة أكبر وهي الهادرونات التي تشمل البروتونات والنيترونات.

نبذة عن تاريخ المجال المغناطيسيّ

في عام 1269 رسم الباحث الفرنسي «بيتروس بيريجرينوس دي ماريكورت-Petrus Peregrinus de Maricourt» خريطة المجال المغناطيسي على سطح مغناطيس كروي باستخدام إبر حديدية. إذ لاحظ أن خطوط المجال الناتجة تتقاطع عند نقطتين، أطلق عليهما “الأقطاب” ووضح أن المغناطيس له قطبين شمالي وجنوبي. بعد ثلاثة قرون، جاء «ويليام جيلبرت-William Gilbert» بمغناطيسية الأرض أي أنها لها مجال مغناطيسي. في عام 1750، صرح رجل الدين والفيلسوف الإنجليزي جون ميتشل أن الأقطاب المغناطيسيّة تتجاذب وتتنافر.

وما زالت الاكتشافات تتوالي، تحقق تشارلز أوغستين دي كولوم في عام 1785 تجريبيًا من المجال المغناطيسي للأرض. بعدها في القرن التاسع عشر، ابتكر عالم الرياضيات والهندسة الفرنسي سيميون دينييس بواسون أول نموذج للحقل المغناطيسيّ والذي قدمه في عام 1824.

في عام 1819، اكتشف الفيزيائي والكيميائي الدنماركي هانز كريستيان أورستد أن التيار الكهربائي ينشأ حوله حقل مغناطيسي. وفي عام 1825، اقترح أمبير نموذجًا للمغناطيسية، إذ كانت القوة الناشئة عن التيار الكهربي المتدفق، بدلًا من الأقطاب المغناطيسية. أظهر الإنجليزي فاراداي أن المجال المغناطيسيّ المتغير يولد مجالًا كهربائيًا (الحث الكهرومغناطيسي) في عام 1831.

بين عامي 1861 و 1865، نشر جيمس كلارك ماكسويل نظريات حول الكهرباء والمغناطيسية تعرف باسم معادلات ماكسويل وصفت العلاقة بينهما.

يمكن توضيح المجال المغناطيسيّ بـ:

  • خطوط المجال المغناطيسيّ: هي خطوط تخيلية وتستخدم لتمثيل المجالات المغناطيسية وتشير كثافة الخطوط إلى حجم المجال، فمثلًا يكون المجال المغناطيسيّ أقوى ومزدحم بالقرب من القطبين وكلما ابتعدنا يكون ضعيف وكثافة الخطوط أقل.
  • متجه المجال المغناطيسيّ: يوصف المجال المغناطيسي رياضيًا بمتجه ويشير كل متجه في الاتجاه الذي تشير إليه البوصلة (شمال، جنوب، شرق، غرب…).

وإليك خصائص المجال المغناطيسي:

  • لا تتقاطع خطوط المجال المغناطيسي مع بعضها.
  • تعبر كثافة خطوط المجال عن قوة المجال.
  • دائمًا ما تصنع خطوط المجال المغناطيسي حلقات مغلقة.
  • تبدأ خطوط المجال المغناطيسي دائمًا من القطب الشمالي وتنتهي عند القطب الجنوبي.

كيف ينشأ المجال المغناطيسي؟

ينشأ عندما تكون الشحنة في حالة حركة وهناك طريقتين من خلالهما يمكننا توليد مجال مغناطيسي.

عند مرور تيار كهربي

لديك سلك كهربي يتدفق خلاله التيار عن طريق توصيله ببطارية ومع زيادة التيار عبر الموصل يزداد المجال المغناطيسي وعندما نبتعد عن السلك يتناقص المجال مع المسافة، وهذا ما تم وصفه من قِبل قانون أمبير.

فالمجال المغناطيسي له اتجاه لأنه كمية متجهة، ويمكن تحديده بواسطة قاعدة اليد اليمنى، بالتفاف يدك اليمنى حول السلك وإبهامك في اتجاه التيار وباقية الأصابع تلتف في اتجاه المجال المغناطيسيّ.

حركة الإلكترونات حول النواة

يوجد بعض المواد يمكن تحويلها إلى مغناطيس (مثل الحديد) باستيفاء بعض الشروط:
نحتاج إلى ذرات تحتوي على إلكترون أو أكثر لها عكس اتجاه الدوران. فالحديد مثلًا يحتوى على أربع إلكترونات.

يجب أن تكون المادة مستقرة بدرجة كافية.

بعد أن انتهينا من مقالنا (المغناطيسيات الكلاسيكية وميكانيكا الكم). في المرة القادمة سيكون حديثنا عن تجربة Stern-Gerlach والسلوك الكمومي بها.

أقرأ أيضا: مقدمة في الحوسبة الكمية

المصادر

اضغط هنا لتقييم التقرير
[Average: 0]
Author: Ayaa Yasser

آية من مصر، أدرس الرياضيات، مُحبة للعلوم والبحث العلمي.

Ayaa Yasser

آية من مصر، أدرس الرياضيات، مُحبة للعلوم والبحث العلمي.

View Comments

Share
Published by
Ayaa Yasser

Recent Posts

استخدام حرارة الجسم لشحن الأجهزة القابلة للإرتداء في المستقبل

توصل باحثون إلى اكتشاف رائد يمكن أن يحدث ثورة في عالم التكنولوجيا القابلة للارتداء. لقد…

19 ساعة ago

عصام حجي يقترح طريقة علمية لتقاسم موارد النيل

مع تصاعد التوترات حول نهر النيل، الذي يشكل شريان حياة بالغ الأهمية لملايين البشر في…

19 ساعة ago

سوء استخدام الإنسان للذكاء الاصطناعي سيجعله أكثر خطورة

من المتوقع أن تشهد البشرية في السنوات القليلة المقبلة تطورات كبيرة في مجال الذكاء الاصطناعي.…

19 ساعة ago

المشي حافيًا قد يجعلك أكثر عرضة لمقاومة المضادات الحيوية

مقاومة المضادات الحيوية، التي تمثل تهديدًا صحيًا عالميًا متزايدًا، لها سبب مفاجئ وهي التربة. حيث…

20 ساعة ago

كيف حاول السهروردي وابن عربي شرح طبيعة الإله؟

في عالم الفلسفة الإسلامية، تم التغاضي عن مفهوم رائع لعدة قرون. لقد كانت الأحادية (monism)،…

يومين ago

دراسة تكشف أن الحياة لا تحتاج إلى وجود كوكب!

من خلال إعادة التفكير في افتراضاتنا حول الحياة خارج الأرض، يتحدانا عالمان للنظر في إمكانية…

يومين ago