محطات الطاقة الكهرومائية: كما ذكرنا في المقال السابق عن أهمية الدورة الشمسية في مبدأ عملية توليد الطاقة الكهرومائية. من أهم العوامل التي تؤخذ بعين الإعتبار عند التفكير بإنشاء محطة التوليد الكهرومائية هي مستوى منسوب الماء في الموقع المراد توليد الطاقة منه أو ما يعرف بارتفاع الرأس 《Head》.
محتويات المقال :
ارتفاع الرأس يعرف بالفرق بين منسوب ارتفاع المصدر، والذي يجب أن يكون عند مستوى معين أو نقطة يبدأ عندها تدفق الماء دون أن يؤثر هذا على منسوب الماء في الموقع، وموقع تفريغه. هذه النقاط التي يتم بينها تدفق الماء مكتسبًا طاقته الكامنة والتي ستكون متاحة للاستخدام في توليد الطاقة الكهربائية المنشودة.
تعمل محطات الطاقة الكهرومائية على تحويل الطاقة الكامنة للماء إلى طاقة كهربائية. تتناسب الطاقة الكهربائية المنتجة مع نسبة إرتفاع الرأس؛ نسبة تدفق الماء؛ وكذلك كفاءة العنفة المستخدمة، والتي ستسمح بمرور الماء إلى الجانب الآخر كفتحة تصريف لهذه المياه. خلال عملية تحويل تستخدم فيها الكثير من الآلات الميكانيكية والكهربائية.
بافتراض وجود موقع ذو نسبة جيدة من مياه الأمطار والمياه المتدفقة الأرضية، أهم المتطلبات الفيزيائية التي يجب تلبيتها تتمثل بوجود مصدر لتجميع المياه. احتياطي الماء المجمع سيعمل على تغذية المصدر الأساسي، ليبقي منسوب الماء في حدود الارتفاع المطلوب.
توجد آليتان يتم من خلالهما خلق الظروف المناسبة لإعطاء الماء طاقته الكامنة، وهما:
تبنى المحطة في موقع السد أو بمحاذاته، بحيث يعمل السد على حجز الماء من مصدر مائي قريب مكونًا بذلك بركة. عند الحاجة للمياه، يتم فتح منفذ مائي في السد، تتدفق المياه عبره بتأثير الجاذبية، وتتحول الطاقة الكامنة في الماء إلى طاقة حركية تدير العنفة.
بينما في عملية التحويل ينقل الماء من مصدره ليتدفق عبر قناة، ومن ثم يؤخذ إلى الأسفل عبر منظومة أنابيب مضغوطة إلى العنفة.
وجود محطات الطاقة الكهرومائية قرب مصادر الماء المتحرك يعتبر مهم، لكن وجود السدود أيضًا من الأهمية بمكان. السدود تعمل على تخزين المياه لأوقات الحاجة، سواء أكان غرض
التخزين للاستخدام الزراعي، أم الطاقة، أم غيرهما.
تكمن أهمية التخزين في القدرة على الوصول إلى الماء بأي وقت، وأي موسم. يكمن التحدي في التباين الذي يمكن أن يحدث موسميًا بسبب الطقس، والمناخ؛ وبالتالي تظهر هنا الحاجة للتخزين للتغلب على هذه الإشكالية، وتوفير مخزون جيد من الممكن استخدامه كلما دعت الحاجة بغض النظر عن التباينات الجغرافية والطبوغرافية.
اختيار أفضل ميكانيكية يمكن أن تحقق المخزون المطلوب تعتمد على عدة عوامل، منها: طبوغرافية، جيولوجية، عوامل الطقس، وتوفر الخبرات؛ والموارد.
بناء السدود قد لا يكون حلًا اقتصاديًا للمواقع ذات الطبيعة المفتوحة، ولذا الحاجة للتفكير بطرق أخرى قد يكون أفضل.
مع هذا، بغض النظر عن السيناريو السابق، بناء السد في الحالات الأخرى يعتبر حلًا ناجعًا.
أهم ما يجب تحريه عند تصميم أي سد هو عامل الأمان. ففي تصميم أي سد، هنالك قوى يجب أن تؤخذ بعين الإعتبار. أولها، قوة ضغط المائع، ووزن، وكثافة المواد، والضغوط الرافعة كذلك. ثانيًا؛ احتمال حدوث زلازل، أو تسرب، أو ثلوج، أو فيضانات. العوامل الخاصة بالجزء الأول بشكل عام، يمكن حلها بسهولة بالحسابات، والخبرة.
يعتبر الأخص من حيث تكاليف البناء، والمواد؛ خصوصًا إذا كان ركام الصخور متوافر. تعتمد السدود الركامية على وزنها لعرقلة قوة المياه المندفعة.
تعتمد بشكل رئيسي على وزنها للثبات، والوزن يأتي من كمية الأسمنت المستخدمة في بناء الهيكل. محور جسم السد قد يكون مستقيماً أو قوسيّاً.
تتعرض مساحة كبيرة من السدود الثقالية إلى ضغوط رافعة، ينتج عن ذلك انخفاض عامل الأمان ضد الانقلاب. لذا كان من اللازم تطوير تتغلب على هذه الضغوط، وهذا ما حققته السدود الداعمة، فأصبحت قادرة على:
– تقليل الضغوط الرافعة من خلال نقل القوى المؤثرة على الجدار الى منطقة أخرى أكثر قوة وتحمل كالأرض، أو الأساسات.
– تقليل كمية الخرسانة المطلوبة.
– الاستفادة من ضغط المياه المخزنة لإعطاء ثبات أكبر.
تتميز هذه السدود برشاقتها، وتصميمها الجذاب والرفيع مقارنة بارتفاعها بنسبة تصل إلى 0.15 وأحيانا أقل لبعض الأنواع الفرعية الأخرى من هذه السدود. تعتمد على شكلها القوسي في نقل الإجهادات إلى كتفي الوادي. يدخل في تصميم هذه السدود حسابات معقدة للإجهاد وعمل تجارب إختبارية للنموذج قبل المضي بالمشروع.
الطاقة الكهرومائية من الممكن تواجدها في أي مكان يوجد فيه تدفق آمن للماء من مستوى عالي إلى مستوى منخفض.
توليد الطاقة: كما نعلم الطاقة لا تفنى ولا تستحدث، ولكن تتحول من صورة إلى أخرى. في عملية توليد الكهرباء، هذا ما يحدث بالضبط. لتوليد هذه الكهرباء، يجب أن يكون الماء في حالة ديناميكية. هذه الطاقة الديناميكية المتولدة من طاقة الوضع، والمسببة لتدفق الماء تعمل على تدوير مراوح العنفة، لتتحول الطاقة الديناميكية إلى طاقة ميكانيكية. ومن هنا تعمل العنفة على إدارة الجزء الدوار للمولد فتتحول الطاقة الميكانيكية إلى طاقة كهربائية.
كما ذكرنا مسبقا الطاقة الكهرومائية تعتمد بالأساس على الموقع، ولكن من الممكن تصنيف محطاتها طبقا لهذه العوامل المختلفة:
يعتبر التصنيف بحسب سعة الطاقة الإنتاجية بالميجا واط أكثر تصنيف يُعمل به على مستوى واسع نسبيًا، قد يختلف المعيار بحسب الدولة، إلا أنه لا يخرج عن التصنيف التالي بالعادة:
بإمكان المحطات الصغيرة للغاية تزويد الطاقة لمصنع معزول مثلًا، أو تجمع سكني صغير. هذه المحطات قائمة بحد ذاتها ولا ترتبط بالشبكة العامة. تعتمد على آلية الانسياب السطحي، وتزود أحيانًا بخزانات لضمان توليد الطاقة في ظروف السريان الضعيف للماء.
المحطات الصغرى أيضًا تعتمد على آلية الانسياب السطحي، إلا أنها ترتبط بالعادة بالشبكة العامة للطاقة.
تتنوع آليات التوليد للمحطات المتوسطة ما بين الانسياب السطحي، والتحويل. وترتبط دومًا بالشبكة العامة. المخطط قد يضم وجود سد يعمل على توليد ارتفاع رأس، ومكونات المحطة تشبه مكونات المحطات الكبرى.
المحطات الكبرى: تتصل دوما بالشبكة العامة للطاقة، ويمكن أن تعتمد على نهر جاري، أو ماء مخزون سلفًا.
من الممكن أن يختلف الحد الأدنى بحسب معايير الدولة، أو المؤسسة التي ستقام فيها المحطة. مثلًا البعثة الدولية للسدود العليا تعرف السد العالي بأنه أعلى من ١٥ متر.
يجب الإشارة إلى أن التصنيف بحسب ارتفاع الرأس قد يكون غير متوافق مع تصنيف السعة الإنتاجية. بما أن السعة الإنتاجية تتناسب مع ناتج ما هو متواجد من ارتفاع الرأس والتدفق، فمن الممكن لمنظومة تعتمد على ارتفاع رأس عالي أن تصنف كمحطة صغرى.
بشكل عام، المنحدرات الجبلية توفر الظروف الضرورية لتحقيق ارتفاع رأس عالي، بينما الأراضي المنخفضة ذات وديان تتبع نهر واسع تمثل مواقع جيدة لارتفاع رأس صغير نسبيًا.
1. High head: H > 100 m
2. Medium head: 30 m < H < 100 m
3. Low head: H < 30 m
هذا النوع يولد الطاقة باستخدام التدفق النهري بشكل مباشر. تباين الطقس، والتغيرات الموسمية والتي ستؤثر على الطاقة الإنتاجية يجعله مصدر غير موثوق. معظم محطات هذا النوع لا تحتوي على سعة تخزينية، وإن وجدت فتكون بالعادة محدودة للغاية مما يجعل أقصى ساعات ذروة من الممكن تحقيقها عبرها بضعة سويعات.
هذا النوع يعتمد على الجدول المائي الذي تم حجزه من قبل السد ليشكل خزان يتم حفظ الماء فيه خلال أوقات التدفق العالي، ليتم استخدامه لاحقًا في فترات التدفق المنخفض. استخدام هذه الآلية من الممكن أن يشكل ضمان جزئي للتغيرات الطبيعية التي قد تحدث بشكل فجائي.
هذا النوع يخزن الماء عبر ضخه من خزان منخفض، أو نهر منخفض، إلى خزان ذو موقع أعلى. يتم ضخ الماء خلال ساعات الاستخدام المنخفض. هذه العملية من الممكن أن ترفع الكفاءة إلى ٨٠ بالمئة.
Hydroelectric Power
Hydroelectric power: A brief guide to the
generation of electricity using hydroelectric power
A review of pumped hydro energy storage – IOPscience
نجح فريق من المهندسين الميكانيكيين في جامعة نانيانغ التكنولوجية في سنغافورة في تطوير نظام لأتمتة…
عُيِّن أدولف هتلر مستشارًا لألمانيا في عام 1933 بعد سلسلة من الانتصارات الانتخابية التي حققها…
لقد تم الإعلان عن تطوير جوجل لشريحة حوسبة كمومية تدعى ويلو (Willow)، والتي يمكن أن…
في عالم الخيال العلمي، تحلق سفن الفضاء عبر الكون بسرعات مذهلة، وتستكشف المجرات البعيدة وتسافر…
لعقود من الزمن، ظل العلماء يحاولون فهم أصل المادة المظلمة، وخصائصها، وسلوكها. النظرية السائدة هي…
في القرن التاسع عشر، أحدث الفيلسوف الألماني فريدريش نيتشه ثورة في طريقة تفكيرنا في الفن…